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ABSTRACT: Scented volatile chemical products (sVCPs) are
frequently used indoors. We conducted field measurements in a | <
residential building to investigate new particle formation (NPF) @ o e
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atmospheric O3 and initiate indoor NPF, resulting in nucleation
rates as high as ~10° cm™ s™' and condensational growth rates up
to 300 nm h™'; these are orders of magnitude higher than those reported during outdoor NPF events. Notably, high particle
nucleation rates significantly increase indoor atmospheric NCA concentrations (10°—10° cm™3), and high growth rates drive their
survival and growth to sizes that efficiently reach the deepest regions of the human respiratory system. We found sVCP-nucleated
NCA to cause respiratory exposures and dose rates comparable to or exceeding those from primary aerosol sources such as gas

stoves and diesel engines, highlighting their significant impact on indoor atmospheric environments.

KEYWORDS: indoor air quality, new particle formation (NPF), ultrafine particles, indoor atmospheric chemistry,
volatile organic compounds

B INTRODUCTION extensive use and accessibility. A national survey in the U.S.
revealed that 98.3% of Americans encounter sVCPs weekly
through personal use, and when including indirect interactions,
this increases to 99.1%."" The global home fragrance market,
valued at approximately 11.12 billion USD in 2023, is expected
to continue to grow.12 In the U.S. alone, fragranced consumer
products contribute about 26 (+20) kilotons of monoterpenes
to the outdoor environment annually.® Despite their extensive
use, the role of sVCPs on air quality remains one of the most
uncertain sources of air pollution in the U.S.”

Previous studies have explored various aspects of secondary
particle formation from sVCPs, with notable findings that
include reaction mechanisms,” molecular composition of gas-

Volatile chemical products (VCPs), ubiquitous in the home
environment, have the potential to replicate the complex
biogenic reactive chemistry of dense forests within the enclosed
spaces of our homes, offices, and schools. Emissions of volatile
organic compounds (VOCs) from VCPs rival those from
traditional sources' and participate in photochemistry and
ozonolysis to yield a broad spectrum of oxygenated VOCs
(OVOCs) and secondary particles,” " with both primary and
secondary products known to cause detrimental human health
effects.” Therefore, VCPs have been identified as a potential
source of contaminants of emerging concern.”’ Fragrances,
often terpenes such as monoterpenes, and their oxygen-
containing derivatives, monoterpenoids, are commonly added

to VCPs to elevate the user’s olfactory experience during use.”” Received:  June 2, 2024
Such scented VCPs (sVCPs) encompass a broad range of Revised:  August 20, 2024
consumer products, including personal care products (PCPs), Accepted:  August 21, 2024

air fresheners and other aromatherapy products, laundry Published: September 24, 2024

products, cleaning supplies, and disinfectants.”’® The wide-
spread availability of sVCPs in major retail stores highlights their
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phase species,">™'® and high mass-based particle formation
yields.>*'®'” However, these studies have often focused on
either gas-phase components or larger particles, leaving a critical
size fraction that bridges these scales undetected and
uncharacterized. This size fraction includes the sub-3 nm
nanocluster aerosol (NCA) regime, where gas-to-particle
transition occurs,'® and the early growth nanoparticle regime,
known as the “valley of death”,'” where sub-10 nm particles with
high Brownian diffusivities are likely to be lost due to
coagulation scavenging. Studies reporting indoor NCA concen-
trations and characterizing their formation and growth dynamics
are limited,”° > with no studies available for realistic sVCP use
scenarios indoors. NCA are efficiently deposited in the upper
human respiratory tract (deposition fraction (DF,,,,) ~ 1 nm)
and the tracheobronchial region (DF,,, ~ 4 nm).”** If they
survive their high Brownian diffusivities, they can grow to sizes
that efficiently reach the pulmonary region (DF,,,, ~ 30 nm).”

A host of laboratory chamber studies have revealed that
monoterpenes and monoterpenoids can surpass the nucleation
barrier and the “valley of death” upon oxidation.”>~>* However,
it remains unclear whether these outcomes will persist in real-
world sVCP use scenarios indoors, where the levels of both
precursors and oxidants vary widely depending on the
immediate environment and the product used. Additionally,
the much larger surface area available indoors compared to
laboratory chambers™ and the presence of occupants introduce
further complexities that may influence these outcomes. The
abundance of surfaces indoors can serve as sinks, sources, or
media for heterogeneous chemistry involving particles and
reactive gases. Moreover, the indoor environment can be highly
dynamic due to human activities and occupancy patterns, which
can alter ventilation rates and result in indoor oxidant
concentrations being only a fraction of those found outdoors.
Furthermore, human occupants can also act as sinks for oxidants
such as Oj due to the presence of skin oils.”* Occupants also
introduce a variety of sVCPs in their daily activities, with varying
fragrances that may result in high concentrations of reactive
gases indoors. Therefore, it is important to understand the fate
of these uncharacterized nanoparticles during real-world sVCP
use scenarios indoors, particularly since sVCP usage typically
occurs in the presence of occupants. This knowledge gap exists
due to the analytical challenges in measuring nanoparticles in
real-time at the molecular scale.”® However, recent progress in
measurement techniques for sub-10 nm particles based on high-
resolution electrical mobility classification, combined with
advances in particle magnifying methods and material balance
modeling of indoor nanoparticle dynamics, has facilitated the
precise sizing, detection, and modeling of clusters down to
approximately 1 nm.***’

Here, we present the first comprehensive evaluation of new
particle formation (NPF; secondary NCA nucleation and
subsequent growth) during the use of sVCPs in a full-scale,
mechanically ventilated residential test house, integrating
measurements from a novel high-resolution particle size
magnifier—scanning mobility particle sizer (PSMPS)* and a
proton transfer reaction time-of-flight mass spectrometer (PTR-
TOF-MS). We quantitatively show that the use of sVCPs can
drive extremely rapid changes in indoor atmospheric nano-
particle concentrations at comparatively low O; mixing ratios
with unprecedented NCA nucleation and growth rates that far
exceed those observed during outdoor NPF events. Con-
sequently, sVCP use can result in a high respiratory burden to all
regions of the human respiratory system. Our measurements are
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unique in that they fuse advanced instrumentation with a
comprehensive physics-based aerosol dynamics model, allowing
for fundamental size- and time-scale evaluations of sVCP-
nucleated indoor atmospheric NCA dynamics. This study is the
first reporting of NCA nucleation rates and their subsequent
growth rates for indoor terpene ozonolysis. It accurately models
coagulation for the first time as both a loss (CoagSnkdp) and

source term (CoagSrcdﬁ), along with corrected condensational

growth rates for indoor NPF. Such comprehensive character-
ization bridges the gap between gas-phase and larger particle
measurements, allowing for the parametrization of nanoparticle
source strength from sVCP usage. This advances a key step
forward in understanding how sVCP use influences indoor air

quality and human health.

B MATERIALS AND METHODS

Field Measurement Site. Field measurements of NCA
formation and growth during the use of sVCPs for common
household activities were conducted in a single-zone mechan-
ically ventilated residential building: the Purdue zero Energy
Design Guidance for Engineers (zEDGE) test house. The test
house has been described in detail elsewhere.'>'>****~*! Four
indoor mixing fans were installed in the test house to facilitate
indoor air mixing. The mixing state of the test house for both
particles and VOCs has been empirically validated.">** The
particle- and gas-phase constituents of the test house were
continuously monitored in real-time by using a suite of advanced
instrumentation, as detailed in the Measurements section.
Figure S1 illustrates the layout of the test house and the locations
of the instruments during the field measurement campaign.

sVCP Use Activities in the Purdue zEDGE Test House.
We conducted controlled activities to realistically simulate
specific, isolated, common household activities involving the use
of terpene-rich sVCPs for floor mopping, aromatherapy, and
self-care purposes. For the mopping activities, triplicate indoor
floor mopping activities were performed by using a popular
terpene-rich cleaning solution. For aromatherapy, six activities
were conducted in total, including triplicate activities involving
the spraying of a citrus-scented air freshener in the test house
and three activities using essential oil diffusers with three
different blends of essential oils: bergamot, citrus, and thieves.
For self-care regimes, three activities were conducted using
spray-based PCPs. Additionally, triplicate citrus fruit peeling
activities were conducted inside the test house to serve as a
reference for indoor terpene source events."”" In total, 15
indoor sVCP use activities were conducted. Throughout the
field measurement campaign, volunteers were instructed not to
apply any PCPs except during PCP use activities.

The sequence for each category of activity—terpene mopping
(n = 3), essential oil diffuser (n = 3), citrus-scented air freshener
(n = 3), PCPs (n = 3), and citrus fruit peeling (n = 3)—is
detailed in the Supporting Information (SI). Briefly, each
activity consisted of three distinct periods: the background
period (B), the source event period (S), and the decay period
(D). The outdoor air ventilation rate was maintained at a
nominal rate of 6.3 h™! throughout all three periods, facilitating
the introduction of ambient O; into the test house. After the
decay period, the indoor air was purged with an outdoor air
ventilation rate of 9 h™' for at least 30 min. Each activity
commenced with two volunteers entering the test house at time
zero. The initial ten minutes of the activity served as the
background period, during which the test house remained
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inactive to establish a baseline concentration of indoor air
pollutants with people present. Following this, the terpene-rich
sVCP was introduced, marking the beginning of the source
period. We then observed the evolution of gas- and particle-
phase constituents in the test house for 1 h after the end of the
source period. All sVCPs used in these activities are readily
available in major big-box retail stores in the U.S.

Measurements. Online Nanoparticle Measurements.
Indoor atmospheric nanoparticle number concentrations and
size distributions from 1.2 to 572.5 nm were measured in real-
time using two different aerosol instruments: a novel particle size
magnifier—scanning mobility particle sizer (PSMPS; GRIMM
Aerosol Technik Ainring GmbH & Co. KG, Ainring,
Germany)*® and a SMPS with a long differential mobility
analyzer (DMA) (Model 3938NL88, TSI Inc., Shoreview, MN,
U.S.).*** The PSMPS features a diethylene glycol-based
particle size magnifier (PSM; Model A10, Airmodus Ltd.,
Helsinki, Finland) and a modified Vienna-type short DMA,
facilitating high-size- and time-resolved NCA detection and
classification. Additional details on the configuration and setup
of the instruments can be found in Patra et al.”® and are
summarized in the SI. The PSMPS and SMPS measured particle
number size distributions (dN/ dlogD,; ecm™3) for particles
ranging from 1.2 to 55.7 nm and 13.1 to 572.5 nm in electrical
mobility diameter, respectively, with a 2 min DMA scan interval.
Since the PSMPS classifies particles by electrical mobility using a
soft X-ray neutralizer, the electric charge may interact with
carrier gas molecules during this process to produce charger ions
in the NCA size fraction (1.2 nm < d, < 3 nm). Therefore, the
particle number size distributions from the PSMPS in the NCA
size range were corrected for charger ions following the method
proposed in Patra et al.,”’ with minor modifications (as detailed
in the SI). Corrections were also made for diffusional losses
within the PSMPS instrument.

Particle number size distributions from the SMPS in the size
range of 13.1 to 200 nm were used as provided by the data
acquisition software from the manufacturer (Aerosol Instrument
Manager, TSI Inc., Shoreview, Minnesota, U.S.) without
modifications. Due to the operational limitations of the
SMPS,**™* particle number size distributions from 200 to
572.5 nm were corrected using a monotonic cubic spline
interpolation.”® This method ensures smooth and accurate
fitting across the specified size range, effectively addressing gaps
or inconsistencies in the data while preserving the shape of the
particle number size distribution. Finally, the particle number
size distributions from PSMPS and SMPS in the overlapping size
range were merged using a moving average smoothing approach
to obtain a continuous particle number size distribution from 1.2
to $72.5 nm. In the overlapping size range (13.1 to 55.7 nm), we
took the mean values at the same d,, from the two instruments. At
the edges of the overlap, we applied a moving average with a
window size of 7 (three previous points, three subsequent
points, and the current point) for smoothing. The measured
particle number size distributions from the PSMPS were size-
integrated from 1.2 to 3 nm to derive size-integrated NCA
number concentrations (Nyca; cm™).

Online Gas-Phase Measurements. Indoor atmospheric
VOC mixing ratios were measured in real-time (1 Hz) by a
proton transfer reaction time-of-flight mass spectrometer (PTR-
TOEFE-MS; PTR-TOF 4000, Ionicon Analytik GmbH, Innsbruck,
Austria).'>*®**' The hydronium ion (H;0%) was used as the
reagent ion, which ionized the sampled VOC molecules that
have proton affinities greater than water, converting them into
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protonated molecules (VOCH?") via a proton transfer reaction
in the drift tube.’** These protonated molecules were then
separated and detected by the TOF-MS. Mass-to-charge ratios
(m/z) from 30 to 450 were recorded. Additional configuration
details of the PTR-TOF-MS used in this study are discussed in
the SI In this study, we are interested in the mixing ratios of
monoterpenes (C;yH;s) and monoterpenoids (C;,H,,O,
C,0H;40, C,oH 40, and C,H,,0) detected at nominal m/z
values of 81, 137,151, 153, 155, and 157. These values represent
a fragment [C¢H,]", and the protonated masses of [C,,H,;]",
[C1oHs0]", [CyoH;0]%, [CoH,90]", and [C,oH;,0]",
respectively. Table S1 provides the precise m/z values and
identifies possible isomers for each chemical formula.

The PTR-TOF-MS was calibrated daily using two gas
standards,">'° and the mixing ratios of VOCs not available in
the gas standards were calculated using the Ionicon Data
Analyzer (IDA) software (Ionicon Analytik GmbH, Innsbruck,
Austria),"” as detailed in the SI. The total terpene mixing ratios
are expressed as the sum of the mixing ratios for monoterpenes
and monoterpenoids (MT+MTD) at nominal /z values of 81,
137,151,153, 155, and 157, where the reported mixing ratios for
each m/z value represent the sum of all isomers sharing the same
chemical formula. This was done due to the poorly characterized
fragmentation patterns of monoterpenoids,”* and because the
PTR-TOF-MS lacked a fast gas chromatograph (GC) module at
the inlet to separate isomers.>> The approximate compositions
of the monoterpene and monoterpenoid isomers in the sVCPs
used in this study are summarized in Table S2, which also lists
the second-order ozonolysis rate constants for the constituent
isomers. A composition-weighted ozonolysis rate constant was
determined for each sVCP, using the isomer composition and
their respective second-order ozonolysis rate constants, to
represent the effective isomer-weighted terpene ozonolysis rate
constant (K. cm?® s_l).54’55 Other trace gas instrumentation
used during the field measurement campaign included NO,
(NO +NO,), O3, CO,, and SO, analyzers (as detailed in the SI).
Data from the gas-phase measurement equipment were
aggregated and averaged every two minutes to align with the
DMA scan interval of the PSMPS and SMPS.

Indoor Atmospheric NCA Dynamics Modeling. Atmos-
pheric NPF events are typically characterized using two key
parameters: the particle nucleation rate (J; cm™ s™') and the
particle growth rate (GR; nm h™").>° The former parameter
indicates the rate at which particles of a specific diameter are
formed, while the latter quantifies how rapidly these particles
grow to larger sizes. Within the NCA size fraction (1.2 nm < d, <
3 nm), the measured concentrations in the 1.2—1.7 nm range
can include very small particles, large gas molecules, and
molecular clusters.””*® The distinction between these cannot be
made using PSMPS measurements.”” Therefore, the nucleation
rate is usually determined at the critical diameter, representing
the size at which a particle is considered to be stable against
evaporation.” This diameter is approximately 1200 Da or ~1.7
nm in electrical mobility diameter for NPF events.”*** Thus, in
this study, we calculated the indoor atmospheric NCA
nucleation rate at 1.75 nm (]} ,5; cm™ s7') as characterized by
the PSMPS bin having lower and upper size limits of 1.7 and 1.8
nm, respectively. ]| ;5 is calculated as the net growth flux across
this bin, using the discrete aerosol general dynamics equation
(GDE) in a Eulerian specification (as shown in eq 1).”"”
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Figure 1. Time-resolved evaluation of indoor atmospheric nanoparticle nucleation and growth (new particle formation (NPF))—first row: particle
number size distributions (dN/ dlogDp) from 1.2 to 200 nm; second row: mixing ratios of indoor atmospheric Oj (blue line, left y-axis) and terpenes
(expressed as the sum of mixing ratios of monoterpenes and monoterpenoids; green line, right y-axis); third row: size-integrated (1.2—3 nm) sVCP-
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Figure 1. continued

nucleated NCA number concentrations (Nyc,; blue line, left y-axis) and particle nucleation rates at 1.75 nm (J; ;5; green line, right y-axis); forth row:
mixing ratios of indoor atmospheric NO (solid blue line) and NO, (dashed blue line); and fifth row: cumulative adult respiratory tract deposited doses
(Dnca)—during representative indoor sVCP use activities (a: using an essential oil diffuser; b: mopping using a terpene-rich cleaning agent; c: using a
citrus-scented air freshener; d: applying a PCP; and e: peeling citrus fruits (reference terpene source)) in the Purdue zZEDGE test house. The temporal
evolution of indoor atmospheric nanoparticles, terpenes, and Oj for all sVCP use activities is provided in the SI (Figures S4—S8). Note: the color bar
for particle number size distributions from 10 to 107 cm™ is represented by a single color.
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ins i and j, with midpoint diameters d’, an , respectively.
C-N bins i and j, with midpoint diameters d’, and d”, respectively.
i e exclusion of CoagSrc; when modelin: namics can
+ Gl The excl f CoagSrc, when modeling NCA dy
) introduce uncertainties in estimating nucleation rates, often
. . . . 20 cps g s e
The subscript u corresponds to the upper bound of the size resulting in overestimation.” Additionally, it is important to
range used in the aerosol GDE for the estimation of J ;5. note that CoagSrc; has not been previously modeled in the
Kulmala et 31.61 recommended the upper bound size to be the context of indoor NCA formation from Pprecursor VOCs.
maximum size the critical cluster can reach during a short growth The final term on the RHS of eq 1 represents the outbound
time interval. Therefore, in our analysis, we utilized an event- condensational flux at the upper bound size, where N, is the
specific upper bound that corresponds to the maximum size particle number concentration in size bin i with midpoint
1de)nt1ﬁed by our growth rate determination algorithm (Figure diameter u, and C, is expressed as shown in eq 4 (s~ or h™!).%
S3).
The first term on the RHS of eq 1 represents the time rate of GR,
change in particle number concentrations from 1.75 nm to the G= Au (4)
upper bound size. The second term on the RHS of eq 1 accounts
for particle loss due to Ventilaltion, where k‘vent is the nominal In eq 4} GRu is the net condensational growth rate at the upper
outdoor air ventilation rate (s™"). N, corresponds to the indoor bound size 4, and Au is the width of the upper bound size bin.
particle number concentration at size d, as characterized by the The net condensational growth rate (GRggngg; nm h™') is
P ond,d,

PSMPS bin i with a midpoint diameter d, (cm™). The third
term on the RHS of eq 1 describes particle loss due to deposition
onto indoor surfaces due to Brownian and turbulent diffusion,
where kdep,d}, is the size-dependent first-order deposition loss rate

calculated using the mode-fitting method®® and is corrected for
growth due to intramodal coagulation66 ( GReoagd,; NM h™!) and
intermodal coagulation69 (GRScav,dF; nm h7'). A detailed
explanation of the various growth rates can be found
elsewhere.”” The mode-fitting method and different growth
rates obtained for a representative activity are shown in Figures
S3 and 6(a), respectively.

Opverall, eq 1 represents a material balance equation over the

coeflicient for particles at size d, (s7h). kqep,q, was estimated using
an indoor particle deposition model,*” as detailed in Patra et al.*’
The fourth term on the RHS of eq 1 represents particle loss due
to coagulation, where CoagSnk, is the coagulation sink for

particles at size d, (s™'), expressed as shown in eq 2.’ entire indoor nanoparticle population related to nucleation and
4 =572.50m growth processes. The condensational flux appears only at the

CoagSnk , = z kcoag( d, d/p) Ny upper bound size because the cc-)ltndensati‘(>nal sources and losses
T b @) offset each other at the individual bin level.”” A detailed

! derivation of eq 1 can be found in Cai et al.’” It is important to

In eq 2, kcoag(dp, d’P) represents the coagulation coefficient note that eq 1 models coagulation as both a source and a loss
between particles at sizes d, and d’, (em®s™).N 1, is the particle term, and the condensational flux is calculated by correcting the

growth rates for intermodal and intramodal coagulation to

number concentration in size bin i with the midpoint diameter ) i
obtain the corrected net condensational growth rates

d’,. The coagulation coefficient k,,,(d,, d’,) is calculated using

the Brownian and van der Waals viscous forces coagulation (GRCond,d,,)' This is crucial for accurate modeling of NCA
model.** The Hamaker constant used in the coagulation model nucleation rates, which have previously been ignored in ultrafine
is 9 X 1072 J, as experimentally determined by Cai et al.>® for and nanoparticle modeling studies. Additionally, based on
oxidized organic particles formed through nucleation initiated methods outlined in prior studies,””*"”" we also estimated the
by limonene ozonolysis at 20 °C. This is pertinent because it respiratory tract deposited dose rates (Rp; min™') and
represents particles similar to those studied here, maintained at cumulative respiratory tract deposited doses to evaluate the
the same nominal temperature. The fifth term on the RHS of eq rate of deposition and total deposition of secondary nano-
1 quantifies the formation of particles from the coagulation of particles formed during indoor sVCP use in different respiratory
smaller particles, expressed as CoagSrc, (as shown in eq 3) tract regions (head airways, tracheobronchial, pulmonary) of
(em™3s71).5¢ adults (as detailed in the SI).
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Figure 2. Relationship between the background indoor atmospheric O; mixing ratios and the peak cumulative monoterpene and monoterpenoid
mixing ratios during indoor sVCP use activities. The source data for chamber experiments comes from Caudillo et al.*' (CLOUD) and Thomsen et
al>® (AURA). The mixing ratios represent the initial concentrations of O and terpenes used in the chamber experiments. The source data for Boreal
and Landes forests come from Li et al.”* The mixing ratios represent the diurnal concentrations of O; and terpenes in the forest. The data points for
indoor sVCP and chamber experiments are color coded by the particle nucleation rates (], ;5 for our study, and J, , for chamber experiments).

B RESULTS AND DISCUSSION

Indoor Atmospheric Chemistry during Indoor sVCP
Use. Figure 1 presents the time-resolved evaluation of indoor
atmospheric NPF initiated by the use of different sVCPs in the
test house. It also illustrates the direct emissions of terpenes to
indoor air, measured by PTR-TOF-MS as cumulative signals
detected for monoterpenes and monoterpenoids (MT+MTD).
sVCP use results in significant emissions of terpenes.
Manufacturers deliberately fragrance these products primarily
to create pleasant indoor smellscapes,”'’ but they also
inadvertently become major sources of terpenes. The amount
of terpenes released and their temporal emission profiles vary
with the type of sVCP used (Figure 1). Activities such as
mopping the floor using a terpene-rich cleaning agent, using
citrus-scented air fresheners, and applying PCPs result in pulsed
terpene emissions to indoor air, with terpene mixing ratios
peaking within five minutes of source introduction (Figures 1,
S4, SS, and S6). Conversely, using essential oil diffusers or
peeling citrus fruits (reference terpene source) causes a more
gradual increase in the terpene mixing ratios (Figures 1, S7, and
S8). This is the first demonstration of diverse terpene emissions
from a variety of different sVCPs during their realistic usage as
observed via PTR-TOF-MS. The peak terpene mixing ratios
during the use of essential oil diffusers, mopping using a terpene-
rich cleaning agent, using citrus-scented air fresheners, applying
PCPs, and peeling citrus fruits (reference terpene source) were
133—387 ppb, 33—37 ppb, 1128—1411 ppb, 4—151 ppb, and
638—717 ppb, respectively. Notably, a single spray of citrus-
scented air freshener resulted in the highest terpene emissions,
with peak emissions exceeding 1000 ppb (Figure 1 and Table 1).
Terpene emissions from sVCPs are comparable to or higher
than those reported in other indoor and outdoor environments
(Table $3).134172=74

Terpene emissions from sVCPs are predominantly composed
of d-limonene (40—100%; Table S2). Other dominant terpenes
included a-pinene and y-terpinene. All these terpenes contain at
least one endocyclic carbon double bond.”*~”” This function-
ality shows high reactivity toward O,.”%”” Hence, Oj is seen to
be consumed in the test house immediately after terpene
emissions begin (Figure 1), initiating gas-phase ozonolysis.
Monoterpene oxidation proceeds via the formation of peroxy
radicals (RO,*), which can react with NO, HO,, or other peroxy
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radicals. However, under low NO conditions, the ozonolysis of
endocyclic double bonds can initiate a rapid oxidation process
called autoxidation that can compete with reactions with NO,
HO,, and other peroxy radicals.”” Autoxidation is characterized
by repeated intramolecular hydrogen shifts (H-shifts) in the
weakly attached hydrogen atoms of peroxy radicals.”’ After each
H-shift, molecular O, is quickly added, forming highly
oxygenated peroxy radicals that retain their radical functionality
but become more oxygen-rich. Not only the monoterpenes but
also linalool (C;yH;30), a monoterpenoid present in one sVCP
we tested, can undergo RO,* and RO® modulated autoxidation.”
Notably, high RO,* concentrations (2 to 3 X 10’ cm™) have
previously been observed during indoor terpene ozonolysis
events.” Through autoxidation, various highly oxygenated
molecules (HOMs) are formed, covering a spectrum of
volatilities from low-volatility organic compounds (LVOCs; 3
X 107° < ¢® < 0.3 ug m™>) to extremely low-volatility organic
compounds (ELVOCs; 3 X 107 < ¢® <3 X 107> ugm™>) to ultra
low-volatility organic compounds (ULVOCs; ¢® < 3 X 107 ug
m™).” Figure S9 presents a selection of key oxidized VOCs
from d-limonene ozonolysis. In environments with low NO
levels, the RO,° radicals terminate by engaging in radical—
radical interactions that produce either monomers or covalently
linked dimers (ROOR’) with ultra low—volatility.%"w‘82 These
ULVOCs can nucleate to form new particles, playing a crucial
role in biogenic NPF.*

Indoor environments have been found to facilitate bimo-
lecular radical reactions through autoxidation when NO mixing
ratios are below 0.8 ppb.*” During our field measurement
campaign, the NO levels were always less than 0.8 ppb for all
sVCP use activities (Figure 1 and Table 1). Furthermore, high
terpene emissions from sVCPs often resulted in terpene mixing
ratios exceeding those of indoor O; levels (Figure 2). Prior to
sVCP use, indoor Oj levels ranged from 15 to 25 ppb, primarily
introduced to the test house through mechanical ventilation,
while terpene mixing ratios reached 10 to 1000 ppb during sVCP
use. Such Oj;-limited terpene ozonolysis reactions are shown to
yield products with a higher nucleation potential.*> Con-
sequently, we see a burst of nucleation immediately after sVCPs
were used. This is evidenced by the emergence of a large pool of
freshly nucleated molecular clusters that significantly increase
indoor atmospheric NCA levels, as shown in both the particle
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Figure 3. Relationship between the effective terpene ozonolysis reaction rates and particle nucleation rates at 1.75 nm (J, ;5) during indoor sVCP use
activities. K.g, a composition-weighted effective rate constant, is calculated using the isomer composition and their respective second-order ozonolysis
rate constants. The closed symbols represent data from our study, while the open symbols represent data from the literature. Each closed symbol
represents a data point obtained during indoor sVCP use activities from the initial introduction of the sVCP until the next 30 minutes, with
measurements taken at 2-minute intervals. The symbols are color coded by the corresponding coagulation sink for 1.75 nm particles.

number size distributions and the size-integrated NCA number
concentrations, Nyca (Figure 1). Nyca levels increased from
background concentrations of approximately 10* cm™ to >10°
cm™ within a few minutes after introducing sVCPs. Peak Ny,
concentrations were highest for activities using citrus-scented air
fresheners (median peak ~2.7 X 10® cm™), followed by citrus
fruit peeling activities (reference terpene source; median peak
~2.0 X 10® cm™), activities involving using essential oil diffusers
(median peak ~1.7 X 10® cm™), and mopping activities using a
terpene-rich cleaning agent (median peak ~7.4 X 107 cm™).
The lowest Nyca concentrations were observed in activities
involving the use of PCPs (median peak ~9.5 X 10° cm ™). This
trend followed that of the precursor terpene mixing ratios.
sVCP-nucleated NCA concentrations were comparable to or
higher than NCA levels reported for other primary and
secondary NCA sources across different environments (Table
$4), 218:20-23,84-87

Indoor NCA Nucleation and Growth Rates during
sVCP-Initiated Rapid NPF Events. We estimated particle
nucleation rates (J; ;5) of sVCP-initiated NPF events to quantify
the rate at which new particles form against indoor-specific loss
processes (eq 1). Extremely high J, ;5 values, reaching 10° cm™
s™!, were observed (Table 1). The median J, ;5 values during the
use of essential oil diffusers, mopping with a terpene-rich
cleaning agent, using citrus-scented air fresheners, applying
PCPs, and peeling citrus fruits (reference terpene source) were
0.1-6.6 x 10* cm™ 57}, 25.0-30.3 em™ 57, 1.3—1.6 X 10°
em™ 57! 0.7-2.5 em™ 7Y, and 1.3-2.1 X 10° ecm™ s},
respectively. We tested citrus fruit peeling activities in the test
house because this reference terpene source has been previously
evaluated in indoor environments.*”** We observed nucleation
rates similar to those reported (~10° cm™ s7') for citrus fruit
peeling activities. Surprisingly, very high nucleation rates were
observed for other indoor sVCP use activities, with peak
nucleation rates from spraying a citrus-scented air freshener
exceeding those of citrus fruit peeling activities.

The wide variability in ], ;5 can be explained by the variations
in the effective terpene ozonolysis rates (K,(MT+MTD)-
03)26’27 during the activities (Figure 3). Furthermore, these
nucleation rates correlate well with previously published J,
values and terpene ozonolysis reaction rates observed in
CLOUD*® and AURA™ chambers for pure biogenic terpene
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ozonolysis-induced nucleation, suggesting that terpene ozonol-
ysis is the likely pathway for nucleation induced by sVCPs, and
the high terpene emissions from sVCPs explain the high
nucleation rates. Another interesting aspect of sVCP-induced
NPF is that for activities such as using essential oil diffusers,
mopping, using citrus-scented air fresheners, and peeling citrus
fruits (reference terpene source), we see sustained nucleation
even after the active terpene source emission period ended. This
occurs because, for such activities, the indoor terpene mixing
ratios remain elevated after the end of the source period due to
the high terpene emissions (Figure 1) and potential residual
emissions from surface films, which continue to react with O; to
nucleate particles. However, this was not the case for activities
with low terpene emissions, such as PCP use. The only activity
where new particles were not formed was for a PCP use activity
where no significant terpene emissions occurred (peak MT
+MTD mixing ratio ~4 ppb; Table 1 and Figure S6(b)). This
further corroborates the fact that the precursor terpenes drive
nucleation during sVCP use. The nucleation rates observed for
sVCP use activities rival the kinetic limit of H,SO, nucleation at
high H,SO, concentrations (107 to >10® cm™)*’ and nucleation
bursts in pristine coastal NPF events.*® Another notable feature
of sVCP-initiated nucleation is that very high J, ;5 values were
observed even when the CoagSnk; ,5 values were high (0.001—1
s7"). These results demonstrate the effectiveness and rapidity of
indoor atmospheric nucleation bursts due to sVCP use.

The newly formed sVCP-nucleated NCA grew to larger
particle sizes within a few minutes after the start of sVCP use.
The maximum diameter of particle growth (d, ,..,) depended on
the type of sVCP used. For essential oil diffusers and mopping
with a terpene-rich cleaning agent, d,, .., ranged between 35—74
nm and between 9—13 nm, respectively. d, ., for both citrus-
scented air fresheners and citrus fruit peeling activities
(reference terpene source) was greater than 100 nm (~150
nm). Interestingly, the nucleated NCA did not grow to larger
sizes during PCP use activities. These variations can be
explained by the amount of terpenes released from the sVCP
use activities (Figure 2). For instance, as we move toward the
right in Figure 2, the peak terpene emissions released from the
sVCP use activity increase. This suggests that PCP use activities
had the lowest terpene emissions, followed by mopping with a
terpene-rich cleaning agent and using an essential oil diffuser.
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Figure 4. Relationship between the effective terpene ozonolysis reaction rates and net condensational growth rates (GRg,nq) during indoor sVCP use
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rate constants. The closed symbols represent data from our study, while the open symbols represent data from the literature. The data points are color
coded by the size-interval used for the growth rate estimation. The GR,,4 in a specific size range represents the mean growth rate observed in that size

interval.

The maximum terpene emissions were from using citrus-scented
air fresheners and peeling citrus fruit. The d, ., for sVCP use
activities, as noted previously, follows this trend. To quantify the
rate at which the particles grew, we calculated the net
condensational growth rates (GR¢,,q) of the sVCP-nucleated
NCA. GR¢,,q were grouped into three size ranges: 3—10 nm,
10—25 nm, and 25—100 nm, and in each size fraction GR¢gpg
represented the mean GRg,,q observed in that specific size
range. The lower size limit of GRc,yq for different sVCP use
activities was constrained by the limitation of the mode-fitting
growth rate determination algorithm due to the lack of a well-
defined particle mode for smaller particle sizes.”’

GR(yq for sVCP use activities in the size ranges 3—10 nm,
10—25 nm, and 25—100 nm varied between 17—141 nm h™},
48-240 nm h™!, and 168—312 nm h™', respectively. Thus,
GR(,,g Was observed to increase with an increasing particle size
(Figure 4). This trend has been reported for NPF events from
various regions across rural to urban polluted sites and is likely
explained by the partitioning of additional semi-volatile vapors
for larger particle sizes.”””"> The variation in GRg,,q within
different size fractions can be explained by variations in the
effective terpene ozonolysis reaction rates during the activities
(Figure 4). They also correlate well with observations in the
CLOUD chamber for pure biogenic nucleation,”’ suggesting
high terpene emissions from sVCPs also drive the high
condensational growth rates. Therefore, the highest GRc,nq
were observed during the use of citrus-scented air fresheners and
peeling citrus fruit (reference terpene source), followed by using
essential oil diffusers and mopping with a terpene-rich cleaning
agent (Figure 4 and Table 1). The observed growth rates are an
order of magnitude higher than the growth rates observed for
outdoor atmospheric NPF events (~1—10 nm h™').”°

Differences in precursor terpene emission profiles for different
sVCPs led to distinct indoor NPF events (Figure 1). The
following types of NPF events were observed during sVCP use
activities: i. no nucleation or particle growth (PCP use activity;
Figure S6(b)); ii. nucleation but no particle growth (PCP use
activities; Figures 1(d) and S6(a)); iii. nucleation and mild
particle growth (d, . < 20 nm; mopping with a terpene-rich
cleaning agent; Figures 1(b) and S4); iv. nucleation and
moderate particle growth (20 < d,, . < 100 nm; using essential
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oil diffusers; Figures 1(a) and $7); and v. nucleation and intense
particle growth (dp’max > 100 nm; using citrus-scented air
fresheners and peeling citrus activities (reference terpene
source); Figures 1(c), 1(e), S5 and S8). Such diverse types of
NPF have previously been identified for outdoor NPF
events.”””” We are the first to document the diversity of indoor
NPF types associated with the different sVCPs used in this
study.

High GRgyyq is likely the reason NCA from sVCP use
activities can overcome the “valley of death” region during
periods of high terpene emissions. During these periods, the
high condensational growth rates driven by high terpene
emissions help prevent the loss of sub-10 nm particles due to
coagulation scavenging.'” Additionally, the newly formed NCA
are subject to significant Kelvin curvature effects, and it is
expected that these clusters initially grow through the
condensation of extremely and ultra low-volatility organic
compounds (ELVOCs and ULVOCs).”””*"? However, cham-
ber studies on terpene oxidation’” suggest that the highest
concentrations of low-volatility gas-phase constituents remain in
the LVOC region as they are formed during the initial stages of
oxidation; more precursor VOCs are required to form ELVOCs
and ULVOCs."” Consequently, not all freshly nucleated
particles manage to grow beyond the NCA region, and they
only grow when terpene emissions are high and approaching
their peak (Figure 1).'°" For instance, during the PCP use
activities, terpene emissions were not high, likely insufficient to
form the significant ELVOCs and ULVOCs needed to
overcome the Kelvin curvature effect. As a result, while terpene
emissions from PCP use activities can nucleate NCA (albeit at a
significantly lower nucleation rate compared to other sVCP use
activities, as shown in Table 1), the particles do not grow beyond
the NCA size regime (Figures 1(d) and $6). Similar nucleation
events with no particle growth have been reported in outdoor
environments, as illustrated in Figure 1 in Mazon et al,,'% where
the authors term them “quasi events”. Other examples include
Figure 3(b) in Yu et al.'” and Figure 4(b) in Sebastian et al.'*
Furthermore, for other sVCP use activities, indoor NPF events
initially exhibit nucleation and continuous growth as terpene
emissions increase and approach their peak, followed by a period
in which only NCA nucleation occurs without clear continuous
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Figure S. (a) Comparison between indoor and outdoor Oj; and terpene mixing ratios. The indoor O; and terpene mixing ratios are from this study
during the NPF periods. The data for outdoor O, mixing ratio comes from Liao et al.,"** and the data for outdoor terpene mixing ratio comes from Li et
al.”® The terpenes for this study include both monoterpenes and monoterpenoids; however, the outdoor terpenes only include monoterpenes. The
indoor terpene ozonolysis rates were estimated using the indoor O; and terpene mixing ratios, and the composition-weighted effective ozonolysis rate
constant (Kq), calculated using the isomer composition and their respective second-order ozonolysis rate constants. The outdoor ozonolysis rates
were estimated using the outdoor O; and terpene mixing ratios and an ozonolysis rate constant of § X 107'7 cm® s™' (representing the average
ozonolysis rate constant of a-pinene and f-pinene).'>” (b) Relationship between the particle nucleation rates for d, < 2 nm particles and the mean
growth rates of particles between 3 and 25 nm. The data points are color coded by the type of NPF events (blue: remote/rural NPF events; light pink:
indoor NPF events (this study)). The data for remote/rural NPF come from a recent compiled review study on atmospheric nanoparticle growth
rates.”® (¢) Comparison between indoor and outdoor size-integrated (1.2—3 nm for indoor NPF (this study) and 1.1—2.5 nm for outdoor NPF (Sulo
et al.>’)) NCA number concentrations (Nyc,) and CoagSnk. The indoor CoagSnk is calculated for 1.75 nm particles (this study) and the outdoor
CoagSnk is calculated for 1 nm particles in the boreal forest.”” Both indoor Ny, and CoagSnk were calculated during the indoor NPF periods. The
error bars represent the minimum and maximum observed values in (a) and (c). (*) represents data from this study.

growth beyond the NCA size fraction as terpene emissions Such corrections have typically been overlooked in NPF studies.
decline (Figure 1). Similar NCA persistence but no continuous However, to model the net condensational growth rates
growth has also been reported in both indoor and outdoor correctly, coagulation must be accurately modeled and
environments (Figure 2(e) in Rosales et al,” Figure 8(f) in accounted for. Similarly, CoagSrc is often ignored while
Baalbaki et al.,"” Figure 4(a) in Sebastian et al.'" and Figure modeling indoor nanoparticle dynamics. Notably, our sVCP
1(d) in Dada et al.'®®). To fully comprehend indoor use activities suggest that CoagSrc can contribute between 40
atmospheric nanoparticle growth, future studies are needed to and 49% to the estimated J, ;5 values (estimated as discussed in
measure low-volatility condensable vapors using various high- eq S2).
resolution chemical ionization mass spectrometers during sVCP Comparison with Outdoor Atmospheric NPF and NCA
use activities. Studies. NPF from terpene oxidation is extensively docu-
To quantify the survival of particles beyond 3 nm during mented in outdoor environments.'” These VOCs are also
continuous growth periods of sVCP-initiated NPF events, we responsible for indoor NPF resulting from sVCP use activities.
calculated the survival probabilities (P _ 4) of indoor However, in contrast to outdoor terpene levels from terrestrial
atmospheric nanoparticles from 1.75 to 10 nm during sVCP vegetation, sVCPs introduce significantly higher terpene mixing

ratios into the indoor environment (Figure 5(a) and Table S3).
Another difference between indoor and outdoor NPF is that
indoor NPF typically occurs in an Oj-limited region, whereas
outdoor NPF typically occurs in a terpene-limited region
(Figure 2). Prior CLOUD and AURA chamber experiments on
terpene ozonolysis usually simulate outdoor-relevant mixing
ratios and thus also fall in the terpene-limited region (Figure 2).
Thus, indoor NPF occurs at O; mixing ratios lower than outdoor

use activities (as detailed in the SI). Median P; __, 4 for indoor

sVCP use activities ranged from 5.6 X 107* t0 2.6 X 107" (mean
= 4.5 X 107% Table S5). This is consistent with modeled
calculations for an indoor environment, where authors reported
that only 2% of the condensable gases condense onto particles
while the rest are lost to surfaces and ventilation.'”” The
variabilityin P, __, ; during different sVCP use activities can be

explained by the resulting coagulation sink and condensational environments and the studied chamber experiments.
growth rate ratio (Table SS). In urban polluted environments, Although indoor Oy levels are lower, the high terpene
Py, . 4, is typically reported to range between 107 to 1072% emissions from sVCPs drive the indoor terpene ozonolysis rate
Indoor sVCP use activities have higher survival probabilities (K. (MT+MTD)-0s5) to be 100 times higher than the outdoor
than outdoor environments, presumably due to higher terpene rate (Figure 5(a)). The high indoor terpene ozonolysis rates and
emissions during sVCP use. conditions favoring autoxidation®” are likely the reason for very
Another important thing to note is that particle growth due to rapid indoor atmospheric NCA nucleation and growth (Figures
coagulation (GRc,,,) can be significant for sub-10 nm particles 3, 4, and S5(b)). This study marks the first instance of
during intense NPF events as observed here (Figure 6(a)). To characterizing the intensity of sVCP-initiated NPF in a real
quantify, for our sVCP use activities, GR¢,,q can be over- household setting through the parametrization of J,,5 and
estimated by a median of 73%, 25%, and 10% in the size ranges GRcong- Such characterization is more advantageous than
3—10 nm, 10—25 nm, and 25—100 nm, respectively, if the commonly used secondary organic aerosol yields as it provides
growth rates from the mode-fitting method are not corrected for a basis for understanding the intensity of NPF events and
growth due to coagulation (GRc,,y and GRg,) (Table S6). facilitates a direct comparison of NPF across different
1285 https://doi.org/10.1021/acsestair.4c00118
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Figure 6. () Size-resolved growth rates (condensational growth rate (GR¢,,q), intramodal coagulation growth rate (GRC()ag) , intermodal coagulation
growth rate (GRg,,), total growth rate (GRro, = GRgong + GRCoag), apparent growth rate (GRAPP = GReona + GReoag + GRg,,)) for a representative
essential oil diffuser use activity. (b) Relationship between (bottom x-axis) particle nucleation rates at 1.75 nm and (left y-axis) the rate of deposition of
NCA in the adult human head airway region; and between (top x-axis) the condensational growth rate for particles greater than 10 nm and (right y-
axis) the rate of deposition of 10—S0 nm particles in the adult human pulmonary region during the indoor sVCP use activities. The data points are
color-matched to their corresponding axes. The deposition and nucleation rates shown in the figure represent the median rates during the NPF period
and the growth rates represent the mean growth rate of particles greater than 10 nm for each sVCP use activity (a similar analysis is shown in Figure
S11, with the x-axes representing size-integrated indoor atmospheric NCA and 10—50 nm nanoparticle concentrations).

environments. When compared with outdoor remote NPF
events, which are primarily driven by biogenic emissions, sVCP-
initiated indoor atmospheric NPF can reach nucleation rates up
to 10,000 times faster for d, < 2 nm particles (Figure 5(b)).
Similarly, the indoor atmospheric condensational particle
growth rates from sVCP use activities are significantly higher
than those from outdoor remote NPF events. Consequently,
indoor NPF events release up to 4 orders of magnitude more
indoor atmospheric NCA compared to outdoor atmospheric
NCA during outdoor NPF events (Figure 5(c)). Despite having
higher coagulation sinks during indoor NPF events (0.001—1
s™') compared to outdoor NPF events (0.0008—0.003 s"), the
high particle nucleation rates during indoor NPF events lead to a
significantly greater presence of indoor atmospheric NCA. It
should be noted that outdoor nanoparticle levels are regularly
monitored; however, this is not true for indoor environments.
sVCPs, readily available in major retail stores, can initiate indoor
atmospheric NPF at much faster rates during our everyday
activities, even at lower O3 mixing ratios. The mean O; mixing
ratio during the NPF events in our study is 12.1 ppb, which is
comparable to the observed indoor O; levels in residential
environments (mean: 14.9 ppb)'®’ and higher than those in
office environments (median: 4.6 ppb)."'" Indoor O; mixing
ratios may increase further, considering the implications of
recent recommendations to enhance outdoor air exchange rates
to mitigate airborne virus transmission risks, such as those
associated with SARS-CoV-2."'! However, number concen-
trations of indoor nanoparticles down to molecular length-scales
are neither regulated nor routinely monitored.

Linking Indoor NPF Parameters to Respiratory
Exposures. sVCP-initiated indoor atmospheric NPF can pose
significant respiratory risks for indoor occupants. A 20 min use
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of an indoor sVCP can result in between 10" and 10> NCA
being deposited in an adult human respiratory system. Such high
respiratory exposure rivals or exceeds that from primary
combustion sources such as propane gas stoves and heavy-
duty diesel engines.””** Additionally, NPF in outdoor environ-
ments has been reported to result in the inhalation of
approximately 3.3 X 10'° nanoparticles (3—100 nm) per day
in the adult pulmonary region."'” In comparison, our study
observed a mean respiratory tract deposited dose rate of 2.8 X
10® nanoparticles (10—50 nm) per minute in the adult
pulmonary region during sVCP-initiated indoor atmospheric
NPF events. Therefore, even 2 h of exposure to sVCP-initiated
indoor atmospheric NPF throughout the day can exceed the
nanoparticle inhalation exposure observed in the adult
pulmonary region from outdoor NPF events.

Furthermore, we are also the first to link fundamental NPF
parameters to respiratory deposition in different human
respiratory tracts, as shown in Figure 6(b). The particle
nucleation rate, J| 5, is associated with the rate of deposition
of NCA in the adult head airway region (DF,,,, ~ 1 nm), and the
condensational growth rate for particles greater than 10 nm is
linked to the rate of deposition of 10—50 nm particles in the
adult human pulmonary region (DF,,,, ~ 30 nm). We observe a
strong positive correlation between these parameters. This
suggests that NPF events with higher nucleation rates would
increase NCA deposition in the head airways region, and NPF
events with a greater super-10 nm particle growth rate would
enhance the deposition of 10—50 nm particles in the deeper
pulmonary region. Such an association occurs because the
nucleation process increases atmospheric NCA concentrations,
which have a high deposition fraction in the head airways region,
and the higher super-10 nm particle growth rates cause the
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freshly nucleated particles to rapidly grow, surviving the “valley
of death”, up to ~20—30 nm—the size fraction where particles
are efficiently deposited in the pulmonary region of the lungs
when inhaled.” Understanding this is important because indoor
sVCP use triggers both rapid nucleation and growth of particles
that can cause a higher respiratory burden for both the upper
respiratory tract and the deeper pulmonary region. Establishing
such linkages helps to enhance the translation of the health
effects of indoor NPF to a more comprehensible level. The risk is
further exacerbated by the fact that people spend considerable
time indoors,'"* and activities involving sVCP use are frequent.
Thus, unlike outdoor NPF, which directly impacts global climate
and has secondary effects on human health, indoor NPF poses
direct occupant health risks.

Limitations and Future Outlook. Our comprehensive
study highlights avenues for future research and acknowledges
existing limitations. First, there are measurement uncertainties
with the PSMPS instrument. This includes the sensitivity of the
PSM to NCA composition and the production of charger ions in
the soft X-ray neutralizer of the PSMPS within the NCA size
fraction.''* Additionally, the transformation of NCA upon
interaction with charger ions introduces further complex-
ities.'>~""” The exact changes that occur during this interaction
remain largely unknown, ' complicating our ability to
accurately characterize the size and properties of NCA. The
data-driven charger ion correction method, as applied in this
analysis, is one of the approaches to correct for charger ions,
potentially leading to underestimated NCA concentrations, as
detailed in Patra et al.”’ Importantly, despite the uncertainties, it
should be emphasized that the measurements presented in this
study predominantly capture particles resulting from terpene
ozonolysis, not merely artifacts from charger ions. Studies
employing PSM measurements, which do not rely on particle
charging to detect NCA, have consistently demonstrated
nucleation events down to 1 nm originatin§ from terpene
ozonolysis, mirroring our observations.”''® Furthermore,
studies employing DMA-based methods have successfully
utilized known electrical mobility standards to classify NCA,
supporting the robustness of DMAs to classify NCA.>”"*'*

Second, while terpenes from sVCPs can be oxidized by
multiple atmospheric oxidants'?! such as 0;, OH, NO;, or C],
our study only discussed the oxidation of terpenes initiated by
O, based on prevalent literature” and limited detection of OH
radicals (<10° cm™) by the laser-induced fluorescence—
fluorescence assay by gas expansion (LIF-FAGE) method in
the test house,'”” establishing O3 as the primary oxidant.
However, it is important to note that the ozonolysis of terpenes
proceeds with the formation of OH radicals, which participate in
further oxidation reactions.” Third, our study did not
incorporate a fast GC module at the inlet of our PTR-TOF-
MS, which limits our ability to distinguish fragmentation
patterns of protonated VOCs within the PTR-TOF-MS drift
tube.”® Monoterpenes and monoterpenoids, our target VOCs,
produce common fragment ions,”” and due to this, the
fragmentation cannot be resolved solely with the PTR-TOF-
MS. Consequently, we reported terpene mixing ratios as
cumulative signals from parent and common fragment ions,
representing the total monoterpene and monoterpenoid mixing
ratios. Additionally, without GC data, isomer distinctions for
monoterpenes and monoterpenoids were not feasible; instead,
calculations of the terpene composition of the sVCPs were based
on the literature (Table S2). Therefore, we conducted a
sensitivity analysis on our literature-based terpene ozonolysis
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rates, which were found to explain previously published biogenic
nucleation rates within a 20% error margin (Figure $10). Our
findings underscore the need for future research to resolve
individual terpene compounds and their effects on indoor NPF,
particularly given recent insights into the oxidative impacts of
specific monoterpenoids like linalool.®

Furthermore, the outdoor air ventilation rates (6.3 h™')
maintained in this study are higher than those typically found in
most residential homes, which range from ~0.37 to 1.6 h™'in
urban areas.'”’ At lower outdoor air ventilation rates, the peak
terpene mixing ratios in indoor environments can reach higher
levels, but simultaneously, less outdoor O; is introduced
indoors. Our results suggest that indoor atmospheric terpene
ozonolysis reactions occur in an Oj-limited regime (Figure 2).
Thus, even at lower O; mixing ratios, higher terpene mixing
ratios can drive stronger sVCP-initiated nucleation. However,
lower outdoor air ventilation rates also increase the coagulation
rates for nanoparticles, thereby increasing their loss rates.'”*
Future studies under varying outdoor air ventilation rates are
needed to fully elucidate its role in sVCP-initiated indoor
atmospheric NPF and associated inhalation exposures.

Additionally, there are limitations associated with estimating
nucleation and growth rates. We utilized the most recent
equations in the literature to model these rates.’”’" For the
nucleation rate estimation, the formation of charger ions in
DMA might influence the estimation of particle nucleation rates.
However, the charger ion corrections applied in this study
should partially address the uncertainties related to the
nucleation of charger ions in our final particle number size
distributions.”” Evidence for this is the observation of very few
nucleated particles in our corrected particle number size
distributions during a PCP use activity, where no significant
terpene emissions occurred and no nucleation was expected
(Figure S6(b)). As previously discussed, our corrections might
lead to an underestimation of NCA concentrations, resulting in
an underestimated nucleation rate. However, with the current
understanding of the dynamics of charger ions inside the DMA,
it is not feasible to numerically estimate these uncertainties.

For the growth rate estimation, we corrected the apparent
growth rates for coagulation processes (both intermodal and
intramodal) to estimate the particle condensational growth
rates. We used the mode-fitting method to estimate the apparent
growth rates, which have been reported with high uncertainties
in the sub-3 nm size range.”” This was the reason that we did not
estimate the particle growth rates in the NCA size fraction but
instead estimated the growth rates for particles larger than 3 nm
where a prominent particle mode was distinguishable. For
particles larger than 3 nm, the mode-fitting method, after
corrections for coagulation processes, has been observed to yield
particle condensational growth rates close to true condensa-
tional growth rates.”

Finally, this study does not explore the potential impacts of
ammonia (NH;), human-associated organic acids, and sulfuric
acid (H,SO,) on sVCP-initiated NPF. Human activities within
the test house likely introduced NH; and organic acids,'>>"%¢
with outdoor H,SO, potentially introduced via mechanical
ventilation or formed in situ from the ozonolysis of
monoterpenes.'”” While these components, alongside biogenic
ULVOC:s, could synergistically influence nucleation and particle
growth, the specific mechanisms—whether synergistic or due to
co-condensation—remain uncertain.’’ Our findings show that
particle nucleation and growth rates from terpene ozonolysis
during sVCP use align with previous biogenic nucleation studies,
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and we observed no nucleation or growth in events without
significant terpene emissions. These results suggest that terpene
emissions primarily drive indoor NPF, yet the roles of other gas-
phase components cannot be entirely excluded. Future research
should monitor these compounds in real-time to clarify the
multicomponent nucleation and growth mechanisms during
indoor sVCP use.
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