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Abstract
Tetrachloroethylene (PCE) is a widely utilized volatile chemical in industrial applications,
including dry cleaning and metal degreasing. Exposure to PCE potentially presents a significant
health risk to workers as well as communities near contamination sites. Adverse health effects arise
not only from PCE, but also from PCE degradation products, such as trichloroethylene (TCE) and
vinyl chloride (VC). PCE, TCE, and VC can contaminate water, soil, and air, leading to exposure
through multiple pathways, including inhalation, ingestion, and dermal contact. This study
focused on a community setting in Martinsville, Indiana, a working-class Midwestern community
in the United States, where extensive PCE contamination has occurred due to multiple
contamination sites (referring to ‘plumes’), including a Superfund site. Utilizing proton transfer
reaction time-of-flight mass spectrometry (PTR-TOF-MS), PCE, TCE, and VC concentrations
were measured in the exhaled breath of 73 residents from both within and outside the plume areas.
PCE was detected in 66 samples, TCE in 26 samples, and VC in 68 samples. Our results revealed a
significant positive correlation between the concentrations of these compounds in exhaled breath
and indoor air (Pearson correlation coefficients: PCE= 0.75, TCE= 0.71, and VC= 0.89). This
study confirms the presence of PCE and its degradation products in exhaled breath in a
community exposure investigation, demonstrating the potential of using exhaled breath analysis in
monitoring exposure to environmental contaminants. This study showed the feasibility of utilizing
PTR-TOF-MS in community investigations to assess exposure to PCE and its degradation products
by measuring these compounds in exhaled breath and indoor air.

1. Introduction

Tetrachloroethylene (PCE) (CAS Registry Number
127-18-4; C2Cl4; molecular weight 165.83 g mol−1)
is a chlorinated volatile organic compound (VOC)
used as an industrial solvent in dry cleaning andmetal
degreasing. Exposure to PCE can occur in workplaces
and communities near PCE contamination sites [1,
2]. PCE exposure is associated with various adverse
health effects in humans, including neurobehavioral
effects [3], renal dysfunction [4, 5], hepatotoxicity

[6, 7], immunotoxicity [8], reproductive problems [9,
10], and maternal toxicity [11]. Notably, PCE is clas-
sified as probably carcinogenic to humans (Group
2A) by the International Agency for Research on
Cancer (IARC) [12]. Furthermore, PCE’s degrada-
tion products, including trichloroethylene (TCE) and
vinyl chloride (VC), are classified as IARC Group 1A
carcinogens [13, 14].

The United States Environmental Protection
Agency (U.S. EPA) has found PCE at 949 out of
1,854 Superfund sites [15]. PCE is measured in
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groundwater, soil vapor, indoor air, and sub-slab
air to evaluate environmental contamination, but
these measurements may not fully represent human
exposure due to complex environmental exposure
pathways and variations in physical activities [16].
Inhalation has been identified as one of themost com-
mon routes of PCE exposure. Since PCE can read-
ily evaporate from groundwater and soil, infiltrate
buildings, and contaminate the indoor atmospheric
environment, people can be easily exposed from their
homes or workplaces through inhalation [17, 18].
Ingestion of PCE-contaminated water and dermal
contact are also potential threats to public health. The
multifaceted nature of PCE exposure underscores the
need to employ biomonitoring techniques to evaluate
human exposure that could happen throughmultiple
pathways in environmental settings.

Biomonitoring, particularly exhaled breath ana-
lysis, is effective for evaluating PCE exposure [17].
Exhaled breath sampling presents a non-invasive and
convenient method for sample collection [19–21].
Exhaled breath analysis is based on the equilibrium
between alveolar air and pulmonary capillary blood,
reflecting PCE levels in the bloodstream [22, 23].
PCE can enter the bloodstream through ingestion,
dermal contact, or inhalation. In particular, 80%–
100% of PCE intake is unmetabolized and eliminated
as exhaled breathwithin days [24–27]. Exhaled breath
analysis reliably indicates PCE exposure, correlating
with detected PCE levels in the residential indoor air
of people living near dry cleaners [28–35].

Sample collection and analysis are key to
quantifying PCE in exhaled breath. Conventional
methods using sample bags or canisters and gas
chromatography-mass spectrometry (GC-MS) are
limited by potential PCE degradation or contam-
ination during transportation [17, 27, 36, 37]. To
prevent this, in-situ mobile techniques such as
photoionization detectors, electrochemical sensors,
metal oxide sensors, electronic noses, UV spectro-
scopy, chemiluminescence, miniaturized gas chroma-
tography, and portable mass spectrometry have been
developed [38–45]. Nevertheless, the detection limits
of these methods may prove insufficient for quantify-
ing PCE concentrations in community settings [39–
42]. To address these challenges, an emerging instru-
ment can be used, which is the proton transfer reac-
tion time-of-flight mass spectrometer (PTR-TOF-
MS), a highly sensitive, portable, real-time monitor-
ing device [46–54]. PTR-TOF-MS can measure hun-
dreds to thousands of VOCs, including PCE, with a
low detection limit (parts per trillion (ppt) level) in
real-time (1 Hz). Its size allows for transportation in
a vehicle, enabling on-site exhaled breath analysis in
community settings. The PTR-TOF-MS, commonly
used in various indoor air and exposure studies [46–
54], has not yet been employed to measure PCE and
its degradation products via exhaled breath analysis
in community settings. This study aims to assess PCE

exposure in residents of contaminated areas using
PTR-TOF-MS, focusing on both PCE and its degrad-
ation products, TCE and VC.

The field measurement campaign took place in
Martinsville, Indiana, a city with four known PCE
plumes, one designated as a Superfund site (herein-
after referred to as ‘Superfund Site’). Initial invest-
igations conducted by the Indiana Department of
Environmental Management (IDEM) showed elev-
ated PCE concentrations in groundwater and soil,
which have since decreased in some areas due to
remediation efforts [55]. The study targeted chil-
dren aged 6 to 11, given their possible vulnerab-
ility to PCE exposure [56, 57], as part of a pilot
epidemiological study investigating the impact of
PCE exposure on children’s neurobehavioral per-
formance. Community members were trained to
assist with breath collection and communicate study
objectives to participants, leveraging their local know-
ledge to encourage participation.

This paper reports the analysis of exhaled breath
and indoor air using PTR-TOF-MS to understand
PCE exposure within and outside contaminated areas
(figure 1). This project also examined how the con-
centrations of PCE and its degradation products in
exhaled breath varied during the day (from 10:00
A.M. to 08:00 P.M.) potentially due to activity pat-
terns, fluctuations in environmental concentrations,
and physiological rhythms [56]. A total of 105
samples of exhaled breath from73 participants and 13
indoor air samples were collected in residences both
within and outside the contaminated areas, thereby
evaluating correlations between PCE concentrations
in exhaled breath and indoor air, as well as that for
PCE degradation products (TCE and VC).

2. Materials andmethods

2.1. Study location, participants, and sample
collection
This study was conducted in Martinsville, Indiana,
which has four groundwater contamination sites, or
‘plumes’. One plume originated from a dry-cleaning
facility operating from 1986 to 1991, leading to PCE
contamination in groundwater, soil, and air. PCE
can infiltrate buildings through foundation cracks,
increasing indoor air concentrations [22] and expos-
ing residents to health risks such as neurological
impairment, liver and kidney damage, and cancer.
The contamination covers over 60 acres (around
0.24 km2) and includes significant contaminants like
PCE, TCE, VC, methyl ethyl ketone, acetone, and
1,4-dioxane [17]. Three additional known groundwa-
ter contamination sites, namely, the O’Neal, Twigg,
and Harman-Becker plumes, are currently undergo-
ing investigation and remediation processes conduc-
ted by IDEM. Participant recruitment was supported
by Martinsville community members and the com-
munity advisory board (CAB), who regularly met
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Figure 1. Exposure to PCE via multiple pathways and real-time VOC measurement in exhaled breath via PTR-TOF-MS analysis.

to discuss exposure concerns and to facilitate the
study [17]. The pilot epidemiological study, approved
by the Purdue University Institutional Review Board
(IRB-2021-1507), recruited 73 participants for whom
exposure assessment was conducted.

Participants received instructions a week before
sampling to avoid factors affecting breath com-
position, such as dairy consumption [58], pesti-
cides, herbicides, nail polish, and swimming pools.
Sample collection took place on weekend mornings
(08:00 A.M. to 12:00 P.M.) using sample bags (1-
liter polypropylene fitted breath-gas analysis bags,
Tedlar® material, SKC Inc., Cat. No. 249-01, USA).
The sample bag was connected to a single-use plastic
mouthpiece (SKC Inc., Cat. No. P20054, USA) [59]
to prepare the sampling of exhaled breath. Trained
CAB members assisted in exhaled breath collec-
tion at participant’s homes. Participants completed a
demographic questionnaire and practiced the breath-
ing technique before sampling by watching a video
made by the research team. Participants exhaled
into the sample bags following specific instructions
to reach 80%–90% of the bag capacity. Samples
were immediately put into a cooler to prevent
chemical degradation and potential contamination.
Subsequently, exhaled breath samples were transpor-
ted to a mobile laboratory positioned nearby in the
community for the on-site analysis using a com-
mercial PTR-TOF-MS instrument (PTR-TOF 4000,
Ionicon Analytik Ges.m.b.H., Innsbruck, Austria). In
addition, repeated samples were collected from six
participants throughout the day (from 10:00 A.M. to
08:00 P.M.) with 3–4 measurements per participant
(two participants were sampled 3 times, and four par-
ticipants were sampled 4 times) to evaluate diurnal
variations in VOC concentrations in exhaled breath.

Indoor air sampling was conducted in 11 homes
of 13 participants, including siblings, to evaluate
the correlation between concentrations of PCE and

its degradation products in indoor air and exhaled
breath using the PTR-TOF-MS. The mobile labor-
atory, equipped with a sampling manifold, meas-
ured VOC concentrations in real-time, with bed-
rooms chosen for indoor air sampling as they are
where participants spend most of their time [60].
During the indoor air testing, a sampling line made
of perfluoroalkoxy tubing with an outer diameter of
0.9525 cm was used. To remove airborne particles,
a polytetrafluoroethylene filter (1 µm pore size) was
installed at the inlet of the sampling line.

2.2. PTR-TOF-MS
The PTR-TOF-MS enables real-time measurement of
VOCs in exhaled breath samples, utilizing soft chem-
ical ionization to measure individual VOCs at ppt
levels, and features fast response times for online ana-
lysis of end-tidal exhaled breath in field assessments
[61]. VOCs in exhaled breath can react with reagent
ions, such as hydronium (H3O+) and oxygen (O2

+),
in the drift tube section of the PTR-TOF-MS. When
using O2

+, as done in this study to better detect chlor-
inated VOCs such as PCE, this leads to a soft chem-
ical ionization of the VOCs through a charge-transfer
reaction with O2

+, as shown in equation (1) [62]

O2
+ +R→ R+ +O2. (1)

The PTR-TOF-MS detected ionized VOCs (R+)
in the mass range fromm/z 20–450 with amass resol-
ution exceeding 4000 m/∆m. Operational paramet-
ers of the PTR-TOF-MS were informed by our pre-
vious indoor air and exposure measurements with
the PTR-TOF-MS [52, 53] and set as follows: an
inlet flow rate of 700 ml min−1, an electric field
strength to gas number density ratio (E/N) of 139
Td, an inlet temperature of 80 ◦C, a reaction cham-
ber pressure of 2.2 mbar, a reaction chamber tem-
perature of 70 ◦C, and a reaction chamber voltage
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of 600 V. Daily calibrations of the PTR-TOF-MS
were performed using known standard gas mixtures
(Apel-Riemer Environmental Inc., USA) contain-
ing 19 different compounds commonly measured in
indoor air, including PCE, TCE, VC, toluene, 1,2-
dichloroethylene (1,2 DCE), acetone, benzene, iso-
prene, and methyl ethyl ketone. In the calibration
process, the standard gas mixtures were diluted with
VOC-free air (Matheson Tri-Gas Inc., USA) using a
mass flow controller, achieving concentrations ran-
ging from 2 to 50 parts per billion (ppb). The mass-
dependent ion transmission of the PTR-TOF-MS was
assessed based on the information derived from the
daily calibrations. Furthermore, calibration curves
were generated for each VOC to convert the instru-
ment signal in counts per second (cps) to concentra-
tion (ppb).

Exhaled breath samples were connected to the
instrument for a duration of 100 s, during which
mass spectra were recorded at a frequency of 1 Hz.
This approach facilitated the observation of spec-
trum stability over consecutive results within the 100 s
sampling segment. The obtained mass spectra under-
went analysis using the instrument’s proprietary

software (PTR-MS Viewer, Version 3.2.2, Ionicon
Analytik Ges.m.b.H., Innsbruck, Austria). Indoor
air was sampled and analyzed simultaneously. The
sampling duration for indoor air was at least 10 min
(600 s).

2.3. PTR-TOF-MS data acquisition
Post sample data processing involves mass scale cal-
ibration, peak identification, noise reduction, cal-
culation of concentrations (in ppb), and time-series
analysis. Mass scale calibration and peak identific-
ation were performed using raw data and PTR-MS
Viewer. To ensure accuracy, the instrument executed
a mass scale calibration process by matching the
m/z signals of the specific compounds identified.
The m/z values of 165.87 (PCE), 129.91 (TCE), and
61.99 (VC) were used to identify PCE, TCE, and
VC, respectively [63]. Several compounds, includ-
ing PCE, were calibrated using the standard gas
mixture with known concentrations. The concen-
trations of these compounds were calculated using
the measured sensitivity (ncps/ppb) of each VOC.
The measured sensitivity was obtained from cal-
ibration curves as shown by equation (2) [64, 65]

Sensitivity(ncps/ppb) =
ionR+, cal (cps)−Backgroundcal (cps)

ionO2
+, cal (cps)

· 1

Concentrationcal (ppb)
106 (2)

where ionR+, cal is the measured cps for the diluted
standard gas mixture, ionO2

+, cal is the measured cps
for the reagent ion O2

+, Backgroundcal is the meas-
ured cps of VOC-free air, and Concentrationcal is the
known ppb of the diluted standard gas mixture. The
calculation of concentrations was applied to the time-
series data of the measurement, resulting in time-
series concentrations of VOCs. To specify the VOCs
from exhaled breath, the acetone signal was used as
an indicator of exhaled breath [61]. Therefore, the
time points of exhaled breath into the PTR-TOF-MS
can be specified by observing the acetone time-series.
Specific time points of VOC concentrations within
the total time-series data were extracted and used for
data analysis. The indoor air data was analyzed based
on the measurement time, because indoor air meas-
urements were performed in real-time. The average
value was calculated by selecting a 20 s interval from
the end of the sampling period.

2.4. Data analysis

In this study, statistical methods were employed to
explore correlations between concentrations of PCE
and its degradation products in exhaled breath and

indoor air to evaluate the relationship between these
two key exposuremetrics. The data analysis primarily
involved regression analysis and Pearson correlation
testing. Regression analysis was utilized to assess the
relationship between concentrations of PCE and its
degradation products in exhaled breath and indoor
air. Calculations were performed using Microsoft
Excel (Excel 365, Microsoft Corporation, Redmond,
WA, USA).

3. Results

3.1. Comparison of PCE, TCE, and VC
concentrations in exhaled breath of participants
located inside and outside of the plume
A total of 73 participants residing in various loca-
tions, including the Superfund Site (n = 7), Plume
A (n = 4), Plume B (n = 2), Plume C (n = 1), and
Outside the Plume (n = 59), were included in the
study. In figure 2(a), the Superfund Site, Plume A,
PlumeB, PlumeC, andOutside the Plume aremarked
on a map of Martinsville. The average concentrations
of PCE, TCE, and VC in exhaled breath are shown in
the caption of figure 2. PCE was detected in a total
of 66 exhaled breath samples, TCE was detected in 26
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Figure 2. Sampling site and exhaled breath PCE, TCE, and VC concentrations (a) sampling site locations for the Superfund Site,
Plume A, Plume B, Plume C, and Outside the Plume (Google map modified) (b) Exhaled breath PCE concentration from the
Superfund Site (N = 7, mean= 0.17 ppb, median= 0.13 ppb, 25%= 0.10 ppb, 75%= 0.24 ppb), Plume A (N = 4,
mean= 0.13 ppb, median= 0.15 ppb, 25%= 0.12 ppb, 75%= 0.16 ppb), Plume B (N = 2, mean= 0.05 ppb,
median= 0.05 ppb, 25%= 0.04 ppb, 75%= 0.06 ppb), Plume C (N = 1, mean= 0.12 ppb, median= 0.12 ppb, 25%= 0.12 ppb,
75%= 0.12 ppb), and Outside the Plume (N = 52, mean= 0.30 ppb, median= 0.16 ppb, 25%= 0.08 ppb, 75%= 0.27 ppb) (c)
Exhaled breath TCE concentration from the Superfund Site (N = 3, mean= 0.34 ppb, median= 0.22 ppb, 25%= 0.18 ppb,
75%= 0.43 ppb), Plume A (no samples), Plume B (no samples), Plume C (N = 1, mean= 0.12 ppb, median= 0.12 ppb,
25%= 0.12 ppb, 75%= 0.12 ppb), and Outside the Plume (N = 22, mean= 0.56 ppb, median= 0.15 ppb, 25%= 0.12 ppb,
75%= 0.65 ppb) (d) Exhaled breath VC concentration from the Superfund Site (N = 7, mean= 1.94 ppb, median= 1.91 ppb,
25%= 1.09 ppb, 75%= 2.69 ppb), Plume A (N = 4, mean= 2.80 ppb, median= 2.65 ppb, 25%= 2.23 ppb, 75%= 3.22 ppb),
Plume B (N = 2, mean= 2.01 ppb, median= 2.01 ppb, 25%= 1.91 ppb, 75%= 2.11 ppb), Plume C (N = 1, mean= 1.36 ppb,
median= 1.36 ppb, 25%= 1.36 ppb, 75%= 1.36 ppb), and Outside the Plume (N = 54, mean= 3.61 ppb, median= 2.52 ppb,
25%= 1.39 ppb, 75%= 4.37 ppb). N is the number of samples that have a detectable concentration.

exhaled breath samples, and VC was detected in 68
exhaled breath samples.

Comparing the four plume regions (excluding
Outside the Plume), residents in the Superfund Site
exhibited the highest average PCE concentration in
exhaled breath (figure 2(b)). However, the results
from Outside the Plume suggest that PCE exposure
may occur throughmultiple pathways, indicating that
participants may be influenced not only by their res-
idential locations, but also by the spaces they occupy
during the daytime. In addition, PCE can be used
in a variety of ways, including in paint, furniture,
and cleaning products, thus there may be other PCE
sources in the residents’ homes thatmay contribute to
the observed exposures (see the following discussion
section). Furthermore, given that most of the parti-
cipants were primary school students and considering
the 2–3-day half-life of PCE in the body, it is imperat-
ive to consider where they spend the majority of their

time during theweek [22]. In figure 2(c), TCEwas not

detected fromPlumeA and PlumeB. The results from
the Outside the Plume area showed the highest aver-
age concentration (mean = 0.56 ppb). The median

value (0.15 ppb) was lower than the Superfund Site
median value (0.22 ppb), so half of the samples had
values less than 0.15 ppb. In figure 2(d), the results for

VC from Outside the Plume had the highest average
concentration. Comparing plume regions, residents

in Plume A showed the highest average VC concen-
tration in exhaled breath. Collectively, these results
demonstrate that the majority of residents through-

out Martinsville are exposed to PCE and its degrada-
tion products, likely due to a combination of plume-
and non-plume sources near their homes and other

locations they occupy during the daytime. Mobile
exhaled breath analysis of chlorinated VOCs with the
PTR-TOF-MS provided a useful basis for tracking
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Figure 3. Changes in PCE, TCE, and VC concentrations in exhaled breath during the daytime for six participants.

these exposures and their spatial variations across
Martinsville.

3.2. Changes in PCE, TCE, and VC concentrations
in exhaled breath during the daytime
To assess the diurnal variation in PCE, TCE, and
VC concentrations in exhaled breath, six participants
who lived Outside the Plume were monitored from
10:00 A.M. to 8:00 P.M. (figure 3). Their participa-
tion was voluntary. Two participants were sampled
3 times, and four participants were sampled 4 times.
Their IDs are noted asMV0## (table 1). As illustrated
in figure 3, concentrations of PCE, TCE, and VC
in exhaled breath were generally consistent through-
out the daytime, with periodic elevations observed
for a few samples, most notably for VC (MV031,
MV037, and MV057). Average PCE concentrations
for MV018, MV031, MV032, MV037, MV057, and
MV058 were 2.79 ppb, 0.15 ppb, 0.14 ppb, 0.14 ppb,
0.15 ppb, and 0.16 ppb, respectively (table 1). There
was no significant difference (p > 0.05) between
the sampling orders. Average TCE concentrations
for MV018, MV031, MV032, MV037, MV057, and
MV058 were 0.15 ppb, 0.15 ppb, 0.15 ppb, 0.13 ppb,
0.23 ppb, and 0.18 ppb, respectively (table 1). There
was no significant difference (p > 0.05) between
the sampling orders. Average VC concentrations
for MV018, MV031, MV032, MV037, MV057, and
MV058 were 1.16 ppb, 2.25 ppb, 1.81 ppb, 2.09 ppb,

4.78 ppb, and 1.89 ppb, respectively (table 1). There
was no significant difference (p > 0.05) between the
sampling orders. Notably, MV031 exhibited similar
concentrations to MV032 (siblings residing in the
same house). Also, MV057 exhibited similar con-
centrations to MV058 (siblings residing in the same
house). The correlation coefficient between the aver-
age concentrations of PCE and TCE was −0.155,
between PCE and VC was −0.456, and between TCE
and VC was 0.838.

3.3. Comparison of PCE, TCE, and VC
concentrations in exhaled breath and indoor air
To examine possible correlations between PCE,
TCE, and VC concentrations in indoor air and
exhaled breath, indoor air sampling was conduc-
ted at 11 homes of 13 participants, including siblings
(figure 4). Indoor air was measured in the parti-
cipants’ bedrooms. During the measurements, VOC
signals were monitored in real-time by the PTR-TOF-
MS.Once a stable signal was confirmed, samplingwas
performed formore than 2min, and the average value
was taken. PCE was detectable in indoor air in 6 out
of 13 bedrooms, with concentrations ranging from
0.09 ppb to 0.23 ppb, except for MV008 (2.37 ppb),
while exhaled breath concentrations ranged from
0.04 ppb to 2.48 ppb (figure 4(a)). Results indicate
a positive correlation between exhaled breath and
indoor air PCE concentrations (Pearson correlation
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Table 1. PCE, TCE, VC concentrations in exhaled breath during the daytime for six participants.

Participant ID
1st Sample
(ppb)

2nd Sample
(ppb)

3rd Sample
(ppb)

4th Sample
(ppb) Average (ppb) SD∗ (ppb)

PCE
MV018 3.20 2.72 2.33 2.90 2.79 0.36
MV031 0.13 0.15 0.16 0.16 0.15 0.02
MV032 0.13 0.13 0.16 0.15 0.14 0.01
MV037 <MDL∗∗ 0.13 0.16 0.15 0.14 0.01

MV057 0.15 0.15 0.15 -∗∗∗
0.15 0.00

MV058 0.15 0.16 0.16 — 0.16 0.01

TCE
MV018 0.15 0.16 0.14 0.18 0.15 0.02
MV031 <MDL 0.13 0.18 0.14 0.15 0.03
MV032 <MDL 0.16 <MDL 0.15 0.15 0.01
MV037 0.14 <MDL <MDL 0.11 0.13 0.02
MV057 0.28 0.20 0.22 NA 0.23 0.04
MV058 0.19 0.17 0.17 NA 0.18 0.01

VC
MV018 1.23 0.77 1.35 1.30 1.16 0.27
MV031 3.09 1.90 1.84 2.18 2.25 0.58
MV032 1.44 2.08 1.67 2.06 1.81 0.31
MV037 1.95 3.09 1.73 1.60 2.09 0.68
MV057 4.95 4.31 5.07 — 4.78 0.41
MV058 1.86 2.09 1.72 — 1.89 0.19

SD∗:Standard Deviation.

MDL∗∗:Method Detection Limit (0.11 ppb).

-∗∗∗:Not collected.

coefficient = 0.7479). Linear regression analysis
yielded a relationship between exhaled breath and
indoor air concentrations (figure 4(b), y = 0.5331x,
R2 = 0.7534). TCE was detectable in indoor air in 7
out of 13 bedrooms, with concentrations ranging
from 0.14 ppb to 2.11 ppb, while exhaled breath
concentrations ranged from 0.12 ppb to 3.25 ppb
(figure 4(c)). Results indicate a positive correlation
between exhaled breath and indoor air TCE concen-
trations (Pearson correlation coefficient = 0.7134).
Linear regression analysis yielded a relationship
between exhaled breath and indoor air concentra-
tions (figure 4(d), y = 0.6251x, R2 = 0.7942). VC
was detectable in indoor air in 11 out of 13 bed-
rooms, with concentrations ranging from 0.14 ppb to
1.99 ppb, while exhaled breath concentrations ranged
from 1.56 ppb to 15.88 ppb (figure 4(e)). Results
indicate a positive correlation between exhaled breath
and indoor air VC concentrations (Pearson correla-
tion coefficient = 0.8891). Linear regression analysis
yielded a relationship between exhaled breath and
indoor air concentrations (figure 4(f), y = 0.1233x,
R2 = 0.9005).

4. Discussion

This study evaluated exposure to PCE and its
degradation products in a community setting by
measuring exhaled breath and indoor air using the
PTR-TOF-MS, which is a highly sensitive, real-time

instrument. The PTR-TOF-MS can detect VOCs at
low concentrations, which is beneficial for environ-
mental studies where levels may be below the detec-
tion limits of other instruments. Its portability allows
for on-site sample analysis, reducing potential sample
loss that could occur with conventional laboratory
methods in which samples need to be transported to a
laboratory. In this study, exhaled breath samples were
collected from 73 participants on weekend mornings
and analyzed within several hours of sample collec-
tion. PCE was detected in 66 samples, TCE in 26
samples, and VC in 68 samples. Average concentra-
tions were compared based on participants’ residence
locations, categorized as within the Superfund Site,
Plume A, Plume B, Plume C, or Outside the Plume
areas. Surprisingly, average concentrations of PCE,
TCE, and VC were highest in the Outside the Plume
areas. To monitor diurnal changes, exhaled breath
samples from 6 participants weremeasured 3–4 times
during the daytime. Temporal variations in these
samples were statistically insignificant, indicating no
significant changes in exhaled breath concentrations
throughout the day. Correlations between exhaled
breath and indoor air were evaluated by measuring
13 participants and their bedrooms. PCE, TCE, and
VC concentrations in exhaled breath showed positive
correlations with those in indoor air.

Notable concentrations detected in the Outside
the Plume areas suggest multiple pathways of expos-
ure, indicating that individuals might be influenced
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Figure 4. Comparison of PCE, TCE, and VC concentrations in exhaled breath and indoor air: (a) PCE concentrations in exhaled
breath and indoor air (the PCE concentration in indoor air of MV008 was considered an outlier and was removed), (b) PCE
linear regression (the PCE concentration in indoor air of MV008 was considered an outlier and was removed), (c) TCE
concentration in exhaled breath and indoor air, (d) TCE linear regression, (e) VC concentration in exhaled breath and indoor air,
and (f) VC linear regression.

by various environments that they inhabit during the
daytime [66]. The variability in soil-vapor intrusion
and building ventilation conditions across participant
homesmay also contribute to differences in indoor air
concentrations. Older homes may have lower mech-
anical ventilation capacity and more compromised
foundations compared to newer homes which could
contribute to higher indoor air concentrations. In
future work, our research group is going to investigate
the historical variations in PCE concentrations found
in the groundwater, indoor air, and soil samples
across the four plume areas using data collected from
IDEM,U.S. EPA, and other environmental consulting
firms.

PCE degradability also needs to be considered in
community-based PCE exposure investigations. The
concentration range of PCE in exhaled breath meas-
ured in this study (mean: 0.26 ppb (1.78 µg m−3),

range: 0.01 ppb (0.07 µg m−3)—3.75 ppb
(25.44 µg m−3)) and PCE in indoor air measured
(mean: 0.16 ppb (1.05 µg m−3), range: 0.09 ppb
(0.61 µg m−3)—0.23 ppb (1.56 µg m−3)) were low
compared to previously reported results. Liu et al
reported in our previous study PCE was detected in
39 exhaled breath samples (mean: 6.6 µg m−3; range:
1.9–44 µg m−3) and a total of six out of nine homes
were detected with PCE concentrations ranging from
1.6 to 70 g m−3 [17]. In addition, a comparison of
the Superfund Site with other plumes shows that the
Outside the Plume had the highest average PCE con-
centration in the exhaled breath of residents. This
shows the extent of current exposure, and because
PCE is biodegradable and can degrade under cer-
tain conditions, the degradation of PCE over time
is an important aspect to consider when interpret-
ing results. Scheepers et al detected both PCE and its
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degradation products in exhaled breath fromworkers
exposed to PCE [35]. In addition, co-exposure to PCE
and TCE have been observed in previous studies [67].
This investigation demonstrates that co-exposure to
PCE and VC was common among the residents of
Martinsville, and to a lesser extent, PCE and TCE co-
exposure. PCE, TCE andVC are neurotoxic chemicals
[68–71], and potential adverse neurotoxic synergistic
effects have also been reported [67].

To overcome resource limitations and obtain
comprehensive data, future studies should develop
criteria for selecting participants, such as proximity
to hazardous waste sites, length of residency, and age.
Since participation was voluntary, self-selection bias
may arise, as individuals who suspect contamination
could be more inclined to volunteer for testing [19].
In addition, based on observations from our com-
munity partners, parents who were more concerned
about PCE contamination in the community were
more likely to let their children to participate in the
study, compared with those who might be less aware
about the contamination. This created an education
inequity which potentially impacted recruitment and
sample distribution. Increasing the sample size and
randomizing participants will enhance the robustness
of conclusions. The sample size limitation in plume
regions may impact the generalizability of these find-
ings. Future studies with larger sample size and more
diverse participants can enhance the robustness of the
conclusions drawn from this research. In addition, the
inclusion of participants from various demograph-
ics and geographical locations would contribute to a
more comprehensive understanding of exposure pat-
terns for PCE and its degradation products.

This study confirmed the feasibility of using
PTR-TOF-MS for measuring PCE concentrations in
exhaled breath and indoor air in community-based
investigations. Future research should focus on his-
torical variations in PCE concentrations, additional
exposure sources, and the impact of PCE exposure
on neurological health outcomes. The positive cor-
relation between indoor air and exhaled breath PCE
concentrations, as well as the similarity in patterns
among siblings, indicates significant exposure from
the external environment. Other potential sources,
such as non-dry cleaning industries and household
consumer products could influence individual expos-
ure levels. PCE has been utilized in various fields,
including: (1) feedstock for manufacturing chlor-
inated chemicals, (2) degreasers and solvent clean-
ers, (3) dry cleaning and textile processing, (4) car-
pets and spot cleaning, (5) industrial catalyst regen-
eration, (6) lubricants, (7) wood furniture manu-
facturing, (8) sealants and adhesives, (9) metal and
stone polishes and coatings, (10) paints, inks, and
ink removal products, (11) metal surface prepara-
tion and cleaning, (12) plastic and rubber manu-
facturing, (13) laboratory applications, (14) auto-
motive manufacturing and maintenance, (15) mold

cleaners, releases, and protectants, and (16) vari-
ous other industrial, commercial, and consumer uses
[72]. Future research should explore these sources
comprehensively to provide a more nuanced under-
standing of PCE exposure pathways.

5. Conclusion

This study examined PCE, TCE, and VC exposures
in a community setting by analyzing exhaled breath
and indoor air using a PTR-TOF-MS. By focus-
ing on Martinsville, Indiana, a location with mul-
tiple PCE contamination sites, including a designated
Superfund site, the study showed a positive correla-
tion between PCE, TCE, and VC concentrations in
exhaled breath and those chemicals in indoor air. The
findings of this study demonstrate the feasibility of
using exhaled breath analysis to evaluate PCE expos-
ures in a community setting. Overcoming the chal-
lenges of field studies, addressing sample size limita-
tions, understanding PCE degradation, and exploring
other potential sources are crucial steps toward devel-
oping effective strategies to mitigate PCE exposures
and safeguard public health.
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