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Introduction
Air pollution is a major environmental health challenge impact-
ing the respiratory and cardiovascular health of people world-
wide. According to the World Health Organization (WHO), 
air pollution causes approximately 7 million deaths each year 
[1]. To monitor air pollution, professional-grade air quality mon-
itoring stations are deployed to provide information on the 
concentrations and characteristics of gas- and particle-phase air 
pollutants in urban environments. These stations are deployed 
in a limited number of urban areas, thus they only provide accu-
rate air quality information near the measurement site. Satel-
lite-based remote sensing can provide better spatial coverage, 
however, often at the expense of low temporal coverage [2]. 
Unfortunately, both of these approaches are not effective in 
obtaining localized air pollution information at high spatio-tem-
poral resolution in urban areas.

Due to low-cost sensors’ (LCSs) affordability, easy installa-
tion, and limited maintenance, these sensors can be deployed 
at a massive scale and can offer localized and high-resolution 
air pollution information in urban areas [3]. However, LCSs 
often suffer from poor sensing accuracy, which can be correct-
ed using various calibration techniques [4]. Another challenge 
with LCSs is that, due to their size, cost, power consumption, 
reliability, and limited sensing capability, LCSs are not always 
equipped with a complete package of sensors that can concur-
rently measure all important variables, such as meteorological 
conditions and numerous gas- and particle-phase species. In 
urban areas, the characteristics of pollutants vary across differ-
ent locations and the pollutants can result from diverse sources. 
For example, traffic and industrial activities cause black carbon 
(BC) and nitrogen dioxide, whereas buildings and construc-
tion activities emit particulate matter and dust [5]. Ensuring 
detailed and actionable information requires novel monitoring 

approaches that can provide accurate and high-resolution infor-
mation about a wide range of pollutants. These approaches 
also need to be easy and affordable to deploy and maintain as 
otherwise the costs of monitoring limit the scale at which infor-
mation can be obtained.

The present article contributes a research vision for virtual 
sensors (also known as soft, proxy or surrogate sensors [6]) that 
combine Artificial Intelligence (AI) and sensor-equipped Inter-
net of Things (IoT) devices to estimate the values of a quantity 
of interest for which no practical or affordable option is avail-
able. The virtual sensors concept is illustrated in Fig. 1. In the 
context of air quality monitoring, virtual sensors take advantage 
of correlations between pollutants to construct models that can 
estimate the values of important pollutants for which no sensors 
are available using the values of other pollutants [4]. We discuss 
the key requirements for enabling accurate virtual sensors, and 
present challenges and enablers for large-scale use of virtual 
sensors. We also reflect on the state-of-the-art to identify key 
research gaps and to establish a research roadmap for the path 
forward. We also discuss potential applications that can benefit 
from the availability of virtual sensors. We demonstrate the fea-
sibility and benefits of virtual sensors through experiments con-
ducted in Helsinki, Finland and which show how a combination 
of a common pollutant (PM2.5) and environmental variables 
(temperature and relative humidity) can be used to obtain accu-
rate estimates of CO2 and black carbon (BC) concentrations. 
Being able to estimate BC is particularly significant as it is a pri-
mary air pollutant that is generated by fuel combustion and bio-
mass burning and that is associated with severe adverse human 
health outcomes. Low-cost sensors for BC currently suffer from 
low sensing accuracy — approximately 25 percent compared to 
reference sensing instruments — and professional-grade BC sen-
sors cost in excess of $10,000 USD, making them too expen-
sive for large-scale deployments across a city [7]. Most black 
carbon sensors also require regular maintenance as they collect 
the pollutant on a filter that needs to be replaced regularly 
(around 1–2 weeks, depending on the extent of pollution) [8]. 
Indeed, as our results show, virtual sensors overcome these 
limitations and offer an affordable approach that overcomes 
these limitations and that can be used to increase the resolution 
at which BC information (or other pollutants) can be collected. 

Requirements for Virtual Sensing
Virtual sensors are defined as machine learning models that are 
integrated into LCSs and take input measurements of diverse 
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pollutants and environmental variables. In prac-
tice, the pollutant measurements captured by 
LCSs are prone to errors and inaccuracies [9] 
and thus the measurements should be pro-
cessed using machine learning-based calibra-
tion prior to using them in the virtual sensors 
[4]. The development block in Fig. 1 demon-
strates the key requirements to develop virtual 
sensors, which we explain in this section.

Reliable data sets: Virtual sensors are devel-
oped by collecting LCS measurements together 
with gold-standard reference measurements, 
which usually requires co-locating the LCS next 
to a reliable reference instrument. To bolster 
the development of virtual sensors, there is 
a need for high-quality data sets that contain 
the necessary measurements. These data sets 
need to include accurate and high-resolution 
time-series data. They can also contain only 
a small amount of missing data. Reliable data 
sets cover diurnal cycles and seasonal variabil-
ity with good spatial coverage, i.e., preferably 
collected from multiple locations within a city. 

Data driven models: Establishing accurate 
and robust models for virtual sensors requires 
a machine learning (ML) pipeline that can pro-
duce such outputs [10]. ML pipelines are com-
plex and designing them consists of setting up 
an architecture, defining tuning variables, applying optimization 
methods, and evaluating the pipelines against appropriate per-
formance metrics. In constructing the virtual sensor pipelines, 
the training and testing data sets must be reliable, and efficient 
data processing techniques such as data harmonization and 
normalization, data imputations, and feature extraction need to 
be applied. Ensuring the developed models are accurate and 
robust requires a better understanding of the performance and 
caveats of different processing techniques, and evaluation met-
rics that can ensure the deployed virtual sensors will produce 
data that mimics physical sensors. 

Low-cost sensor validation: While reference instruments 
generate ground truth data, LCSs often do not provide reliable 
data. Thus, LCSs should be validated for internal and external 
consistency. Internal consistency requires comparing the LCS 
units against other LCS units and ensuring the readings they 
produce are sufficiently similar in the same context, whereas 
external consistency effectively measures the accuracy, i.e., 
how well the measurements align with a reference instrument 
that provides gold-standard reference measurements. Beyond 
measuring consistency, there is a need for unified protocols and 
processes on how to perform and interpret the results of this 
type of measurement. 

Low-cost sensor calibration: Virtual sensors based on 
LCSs that are deployed should be as accurate as possible. 
The inputs of an LCS, which form the input to the virtual sen-
sor, are subject to noise and errors [9] and thus there is a 
need to ensure the measurements are accurate. The accura-
cy can be improved using calibration. In practice, there are 
two types of calibrations: laboratory calibration and in-field 
sensor calibration. The former refers to validating and cali-
brating the sensors under laboratory conditions. Specifically, 
the LCSs and the reference instruments are placed inside a 
chamber where different variables, such as temperature and 
RH, are controlled. Then, the readings of the LCSs are com-
pared against the data obtained from reference instruments. If 
the readings of LCSs do not follow the readings of reference 
measurements, the LCSs are adjusted or integrated with a cor-
rection function. This is feasible as long as some of the devices 
periodically can access a reference station as this can be used 
to learn a machine learning model which is then transferred to 
other devices [3]. This approach, however, is not feasible for 

regions where no reference stations are available. In this case, 
the model needs to be pre-calibrated in a laboratory prior 
to deployment and the conditions during calibration should 
emulate the conditions in the deployment environment as 
closely as possible. In many cases, laboratory calibration is not 
sufficient as controlled laboratory conditions do not capture 
the dynamics and fluctuations of field settings. This neces-
sitates performing an in-field sensor calibration, where the 
LCSs are placed side-by-side with the reference instruments 
in-field. Then, their measurements are compared and if the 
readings of the LCSs do not follow the readings of the refer-
ence instruments, the LCSs are calibrated (by learning a cor-
rection function using machine learning [9]). For the in-field 
sensor calibration, if the field experiment is long enough, the 
calibration model is typically more reliable because the model 
captures wide ranges of environmental data, such as seasonal 
effects. As with other parts of the pipeline, a key requirement 
is to have calibration processes and measurement processes 
that ensure the process is carried out as accurately as possible. 
In-field calibration can also benefit areas with no reference 
stations as the model can be transferred to other areas with 
sufficiently similar environmental conditions (so-called calibra-
tion transfer) [9].

Virtual sensor validation: The validation of virtual sensors 
similarly should consider multiple different aspects and follow 
well-defined and robust protocols. First, virtual sensors devel-
oped based on individual sensors can be calibrated similarly to 
the inputs of the models, and this requires validating the virtual 
sensor against a reference instrument. Second, the virtual sen-
sor should be validated for internal consistency using cross-unit 
validation, i.e., the virtual sensor model should not be sensitive 
to the sensor unit that runs it but should work accurately on 
multiple LCSs that contain the same sensors. Finally, virtual 
sensors should be subjected to cross-site validation where the 
deployed calibration and virtual sensor models are established 
with data from one location and tested and evaluated with 
another location. This validation is required since the models 
often do not function well when they are tested on different 
sites. However, the solution is to establish a generalized calibra-
tion and virtual sensor model which can be achieved by devel-
oping them using data from multiple sites or through transfer 
learning techniques. 

Figure 1. The phases and components of developing and deploying virtual air 
pollution sensors. The development phase uses the data generated by calibrated 
LCSs and reference instruments in order to establish virtual sensors based on 
data-driven models. The deployment phase utilizes the data from reference 
instruments and calibrated LCSs to be fed into the developed virtual sensors 
which can be embedded into LCS hardware or other computing platforms. The 
application phase uses the outputs of the virtual sensors in order to contribute to 
air quality databases and benefit diverse applications.
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Challenges
We next discuss the different components of virtual sensors, 
reflecting on the current state-of-the-art and identifying key 
research challenges. We also discuss potential enablers for 
these challenges within platforms needed for activating virtual 
sensors and monitoring that explains the performance of virtual 
sensors. A summary of the challenges and possible solutions are 
presented in Table 1.

Platforms
As illustrated in the deployment block in Fig. 1, generally, virtual 
sensors can operate on different types of platforms: dedicated 
computing platforms that are part of fixed infrastructure, embed-
ded LCS platforms, and network deployments that reside on the 
edge or in the cloud. The cost of using the underlying AI model 
for estimating pollution values is generally negligible and the 
main source of resource drain comes from updating the model.

Fixed deployments: Virtual sensors can operate as part of 
fixed deployments, e.g., as part of the urban infrastructure or 
as part of commercial deployments. In these cases, the virtual 
sensors would operate on dedicated computing platforms. Note 
that this could even mean integrating the virtual sensors with ref-
erence stations as cities often utilize different types of monitoring 
stations and their capabilities may even vary. Note that deploying 
the virtual sensors on fixed infrastructure does not generate data 
with high spatial resolution as the virtual sensors exclusively run 
on devices that are deployed at fixed locations. The benefit, how-
ever, is that the virtual sensor models are installed on or close to 
where the required input data is available. Hence, the correla-
tions between input features will be stronger and the ground 
truth data can be easily accessed by the virtual sensors for com-
puting and storing air pollutant concentrations.

LCS embedded systems: Advances in embedded systems 
and computing technologies have made it possible to embed 
complex models, including ML pipelines, directly on embed-
ded devices. Installing virtual sensor models directly on LCS 
platforms increases the resolution of information but comes 
with the caveat that updating the models becomes challeng-
ing. Virtual sensors can also affect the operation of the LCS as 
the storage and computing requirements drain memory and 
energy from other operations. This means the duty cycles of 
the LCS devices need to be carefully optimized to ensure the 
virtual sensors do not significantly hamper the other operations 
of the device, e.g., data collection needs to be limited to the 
most relevant periods of time to avoid overusing the limited 
storage of the LCS platforms. Deploying the virtual sensors 

on the LCS nevertheless has the advantage of deploying them 
independently without a need for data communication, which is 
particularly well suited for urban areas that are not covered by 
extensive smart city infrastructure.

Edge and cloud platforms: The resource drain on the LCS 
platforms can be reduced by running the virtual sensor model on 
an edge or a cloud platform and generating virtual data on them 
[11]. Alternatively, the model can be installed on the embedded 
LCS device, and model updates can be performed on-the-fly 
while data is transmitted to edge or cloud platforms (i.e., fed-
erated learning). The main challenges with this approach are 
ensuring continuous communication links and guaranteeing data 
security. Nevertheless, edge deployments bring the computing 
platforms closer to the sensors where the data is generated. Reli-
able communication links also enable monitoring virtual sensor 
models continuously and calibrating and updating conveniently. 
Another benefit comes from the potential to support virtual sen-
sors for variables that are not available on every LCS platform. 
Naturally, this option requires the availability of edge (or cloud) 
computing infrastructure and economically feasible models for 
harnessing the resources. In lower-density areas, the models can 
run directly on the LCS and be supplemented by a dedicated 
sensor network that monitors areas close to known pollution 
sources (e.g., industrial locations or transportation).

Monitoring Sensor Performance
In practice, the operation of the virtual sensors would encoun-
ter several challenges as addressed in this subsection.

Physical sensor degradation: LCSs deployed in the field 
are subject to wear and tear, and can even malfunction due 
to changes in environmental factors during their service life. 
The degradation naturally affects the quality and reliability of 
the data they produce. In many cases the only way to over-
come the issue is to perform regular maintenance, e.g., sensor 
air flows can become clogged and need to be cleaned or the 
battery of the device may lose a significant part of its capacity. 
Handling maintenance in practice is challenging for massive 
amounts of sensors, particularly if they are deployed widely in 
city infrastructure and carried around by citizens. This requires 
smart condition-based maintenance to automatize the estima-
tion needed for maintenance and then optimize maintenance 
schedules in a resource-efficient way.

Calibration and virtual sensor model drift: The perfor-
mance of calibration and virtual sensor models might also drift 
if environmental conditions change during the operational time 
of the models. The challenge is that virtual sensors which are 
developed using air pollutant data collected during one period 

Table 1. The components of virtual sensors: state-of-the-art, key research challenges and possible solutions. 

Components State-of-the-Art Key Research Challenges Possible Solutions

Sensing
Monitoring stations, reference 
instruments, and crowd-sourcing 
methods

A limited number of reference stations 
in cities, leading to imbalanced spatio-
temporal data

Increasing the number of mini-stations 
hosting reference instruments

Data Ground truth data obtained from 
reference stations

Other sensing solutions such as LCSs 
which often suffer from low accuracy

Calibration models can be developed 
using advanced machine learning 
methods

Models Existing models are developed based 
on statistical approaches

The deployed models work appropriately 
on specific environments and regions

Generalized models enable them to 
work in multi-sites and across different 
environments

Computing 
Platforms

Edge and cloud computing paradigms 
enable performing calibration and 
computation of virtual sensors

Sensors that are deployed in distant 
locations do not have access to 
computing platforms

Advanced communication technologies 
such as 5G and 6G offer access to edge 
and cloud platforms

Performance 
Monitoring

Sensor failure is identified via missing 
data, while anomaly and degradation 
are monitored by colocating them next 
to reference instruments

Reference instruments are not always 
available for in-field deployment

Anomaly and fault detection algorithms 
can remotely identify and diagnose the 
problems
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of time may not work properly once the environmental situa-
tion changes. For example, the traffic volume in a city district 
may change over time, impacting the virtual sensors’ model 
accuracy. This requires re-training the models or developing 
adaptive models that can re-train themselves. Examples of adap-
tive models include transfer learning and federated learning 
— both of which require networking capabilities on the sensors. 
An alternative solution to mitigate model drifts is to use robust 
models, such as physics-based models that are resistant to varia-
tions in environmental factors.

Physical, calibrator, and virtual sensor monitoring: Reference 
instruments in cities are in fixed locations whereas LCSs are dis-
tributed unevenly and in large numbers within the city. The LCSs 
also are not guaranteed to be co-located to a reference instru-
ment frequently. This makes continuous validation a challenging 
task. Instead of requiring the sensors to be co-located, an alter-
native solution is to employ drift monitoring [12] which enables 
LCSs hardware to self-monitor and detect model drifts in calibra-
tors and virtual sensors. Drift monitoring enables cross-checking 
and identifying drift in the sensors, whereas concept drift detec-
tion can further be used to detect model degradation in the cali-
brators and the virtual sensors [13]. Sensors with drift can then be 
scheduled for re-calibration and taken close to a reference station 
or a transfer learning mechanism can be applied.

Feasibility Study
We demonstrate the benefits of virtual sensors through a feasi-
bility study that demonstrates how virtual sensors can be used 
to increase the spatiotemporal resolution of obtaining carbon 
dioxide (CO2) and black carbon (BC). We focus on these two 
pollutants as they are significant health risks and as they are diffi-
cult to capture on LCS platforms. As inputs for the virtual sensors, 
we consider variables that are most commonly available on LCS 
platforms: PM2.5, temperature, and relative humidity (RH). 

Overview of the Field Experiment
We collected air quality measurements from 13 March 2018 to 
18 June 2019 using four LCS units by co-locating them at two 
different reference stations in Helsinki, Finland. The two loca-
tions had different urban characteristics, thus affecting also the 
pollutant distributions, and the sensors were located at different 
altitudes relative to the ground to ensure the locations were as 
different as possible. The locations are shown in Fig. 2. Two of 
the LCSs were installed on the top of the container at about 4 
meters above ground level at an official urban air quality moni-
toring station (A). The LCS units we use cost less than $250 USD 
per unit [14]. The reference station is located in a sparsely pop-
ulated urban area and is separated from the nearest busy road 
by approximately 150 m bands of deciduous forest and also 
surroundings by buildings, parking lots, and small vegetation. 
Hence, the pollution profile at the reference station is similar to 
the urban background. The other two LCSs were installed on 
a second reference station (B) at about 2 meters from ground 
level. The reference station was located in a street canyon with-
in a busy street segment (approximately 28,100 vehicles per 
workday) [15], reflecting higher pollution concentrations. The 
reference instruments in these stations measure a large number 
of atmospheric variables including concentrations of aerosols, 
trace gases, solar radiation, and meteorological variables.

The locations where the LCSs are installed onto the refer-
ence stations are shown in Fig. 2. The LCSs used in our exper-
iment are developed by Clarity Movements Company, based 
in Berkeley, CA, USA. These sensors are capable of measuring 
meteorological variables including temperature via band-gap 
technology and RH via capacitive technology. The sensors also 
measure particulate matter (PM2.5) and CO2 via laser light scat-
tering technology and metal oxide semiconductor technology, 
respectively. The sensors have been calibrated by the manu-
facturer in both laboratory and field environments. While the 
frequency of measurements varies around 16–23 minutes per 

data point, the sensors that are equipped with an LTE-4G com-
munication module send their measurements to a cloud plat-
form provided by Clarity. The data is further stored in the cloud 
and downloadable anytime by request.

To develop the virtual sensor models, we followed the 
steps proposed earlier. We validated the LCSs by consistency 
and accuracy tests to ensure they function well when they are 
deployed in the field. In this step, we performed in-field calibra-
tion for the LCSs and ensured their readings follow the readings 
of the reference instruments. Then, we collected ground truth 
data from the reference instruments at sites (A) and (B). We 
used the variables temperature, RH, and PM2.5 from the refer-
ence instruments and the inputs from the LCS measurements to 
develop the virtual sensor model. 

For the model, we use nonlinear autoregressive with exog-
enous inputs network (NARX) which has been found to out-
perform other state-of-the-art models. The optimal NARX 
hyperparameters which consist of one hidden layer containing 
fifty neurons are obtained through grid search. Bayesian regu-
larization backpropagation is also used for NARX parameters’ 
estimation to ensure the model generalization and avoid over-fit-
ting [4]. We further conducted cross-unit validation and cross-site 
validation for both the calibrated LCSs and virtual sensors model.

Results
Figure 3 shows the box plots of the reference instruments (blue 
boxes) and virtual sensors (red boxes) for BC and CO2 concen-
trations. While Fig. 3a illustrates the daily diurnal cycle of BC 
concentrations, Fig. 3b shows the CO2 concentration in month-
ly aggregation. The blue dashed lines inside the plots represent 
the mean of BC and CO2 concentrations obtained from the 
reference measurements. The red dashed lines represent the 
mean of BC and CO2 concentrations obtained from the out-
puts of the virtual sensors. In all box-plots, the lines inside each 
box indicate the median. The bottom edges of the boxes show 
the 25th percentiles and the top edges show the 75th percen-
tiles. The whiskers present the most extreme data points.

The results in both Fig. 3a and Fig. 3b. demonstrate that the 
developed virtual sensors generate data similar to the measure-
ments of the reference instruments. This is illustrated by the 
dashed lines which show that the mean concentrations of BC 
and CO2 concentrations follow similar patterns. Likewise, the 
median values and the box sizes (both blue and red boxes) 
follow similar patterns. These results demonstrate the high per-

Figure 2. Reference stations (A and B) are located approximately 
one kilometer apart from each other at two different 
environmental profiles, enabling the development and 
deployment of generalized virtual sensors.
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formance of the developed virtual sensors which function accu-
rately to emulate the measurements of two diff erent pollutants 
at two diff erent measurement sites. 

Massive deployment of BC and CO2 virtual sensors is ben-
eficial to generate high-resolution spatio-temporal maps which 
can complement sparse measurements of reference instruments 
and LCSs. The virtual sensor measurements lead to an improved 
understanding of pollutant concentrations and sources in urban 
areas. As shown in Fig. 3a, investigating diurnal cycles assist in 
understanding the pattern of BC concentrations around the mea-
surement area. The BC concentration increases during rush hours 
(about 5–8 AM in the morning and about 3–5 PM in the after-
noon). This result is expected as site A is located on a street that 
is one of the busiest roads in Helsinki. In addition, the increase 
in BC concentrations also takes place in the morning and after-
noon, but with about 1 hour delay. The reason is that site B is 
located in an urban background (surrounded by buildings and 
plants) and BC is usually transported from nearby urban areas. 

In addition, the results in Fig. 3b show the pattern of car-
bon concentration in the northern Hemisphere by illustrating 
more CO2 in the winter than in the summer. The result implies a 
healthy environment in the region as the existing leaves on trees 
absorb more CO2 in the summer than in the winter. These results 
demonstrate that the developed virtual sensors in this article 
perform well by virtually generating data points that follow the 
measurements of physical reference instruments. Indeed, deploy-
ing BC and CO2 virtual sensors can off er dense measurements, 
reduce maintenance costs, and collect large amounts of data. 
Thus, analyzing the data enables an understanding of the envi-
ronmental impacts of air pollution mitigation strategies.

dIscussIon: the ImPact of VIrtual sensors
As illustrated in the application block of Fig. 1, virtual sensors 
improve air quality information and enable the development of 
various applications as described below. 

Virtual Sensors and Deployments: The experiments focused 
on demonstrating the benefi ts of virtual sensors and in practical 
deployments diff erent benefi ts and costs need to be assessed. 
Naturally when data quality is the main consideration then high-
cost precision instruments should be used but this results in 
limited spatiotemporal resolution of the data. The comparison 
between virtual sensors and low-cost sensors in turn is more 
complex. Virtual sensors can provide better accuracy than 
dedicated low-cost sensors as they can use multiple inputs to 
reduce data uncertainty, but they require sufficient quantities 
of sensors providing the necessary inputs. This may be more 
costly than deploying dedicated low-cost sensors for the target 

variable. For example, low-cost sensors for black carbon require 
regular maintenance as they rely on replaceable fi lters. As vir-
tual sensors do not require maintenance, they are best suited 
for long-term monitoring to augment the available information 
whenever suffi  cient sensor deployments are already available.

Comprehensive air quality database: Virtual sensors are 
beneficial for supplementing existing air quality databases, 
which usually contain data sets obtained from air quality mod-
els, satellite remote sensing and offi  cial air pollution monitoring 
stations. As virtual sensors are integrated with LCSs, they can 
estimate additional air pollutants which are not measured via 
physical sensors to increase the resolution and the spatial and 
temporal coverage. 

New air quality index (AQI): The current AQI is limited to 
a few pollutants, such as particulate matter, and carbon mon-
oxide (CO). However, human exposure cannot be accurately 
assessed merely from a limited number of pollutants [16]. Thus, 
a new AQI requires the inclusion of additional variables such as 
BC, lung deposited surface area (LDSA), and particle number 
concentration (PNC). Virtual sensors help to estimate these pol-
lutants for an improved AQI. 

Applications and Beneficiaries: Virtual sensors enable the 
development of various applications. For example, they can be 
integrated with personalized health devices which are carried 
by individuals to report their exposure [17]. This integration also 
enables estimation of exposure to other pollutants such as BC 
and LDSA which are not measured by portable sensors, and 
allows monitoring of traffic pollution or showing green route 
maps for commuters. This can be benefi cial particularly in resi-
dential areas that are exposed to pollutants yet do not have suf-
fi cient economic incentives to deploy professional-grade sensors. 
For example, our ongoing research explores virtual sensors for 
BC in a residential district where the residents commonly burn 
wood [4]. Virtual sensors can also be used as safety devices by 
estimating variables that LCSs are incapable of measuring. For 
example, in indoor environments, the measurements of PNC and 
poisonous gas concentrations enable the detection of fire and 
leakage of harmful gases (e.g. CO), respectively [18]. The poten-
tial benefi ciaries of these applications include citizens, hospitals, 
NGOs, and other organizations, industries, and policymakers.

conclusIons
Virtual sensors off er a potential way to increase the scale of air 
quality monitoring by harnessing correlations and dependen-
cies between diff erent pollutants and environmental variables 
to estimate the concentrations of pollutants that are otherwise 
diffi  cult to capture. This allows harnessing other types of sensors 

Figure 3. Box plot visualization of reference instrument measurements and virtual sensors: the similar length of box plots between 
sensor measurements (blue) and virtual sensors (red) indicate that the virtual sensors estimate the values close to the physical 
sensor measurements: a) diurnal cycles of BC concentrations at sites A (top) and B (bottom); b) CO2 monthly concentrations at 
sites A (top) and B (bottom). 

(b)(a)
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that are easier and more affordable to deploy, instead of requir-
ing deployments of dedicated sensor platforms. We offered a 
research vision for the use of virtual sensors, reflecting back on 
current technology and state-of-the-art solutions for air quali-
ty monitoring, and identifying key research gaps. These gaps 
relate to algorithmic challenges for dealing with data imbal-
ance and sparsity, generality of the models and the data that is 
available for training, and ways to increase resilience to having 
only intermittent access to reference instruments or networking 
capability. We also demonstrated the feasibility and benefits of 
virtual sensors through experiments that used three common 
sensors (particulate matter, temperature, and relative humidity) 
to estimate black carbon and carbon dioxide concentrations. 
The results show that virtual sensors provide data that closely 
aligns with reference instruments and contains expected sea-
sonal and diurnal patterns. Overall, our work shows that virtual 
sensors are a highly promising solution for air quality monitor-
ing, especially for pollutants that are costly or difficult to cap-
ture with a high spatial and temporal resolution. Our ongoing 
work is exploring the potential of virtual sensors further through 
deployments of low-cost sensors in the city of Helsinki. These 
efforts seek to provide a better understanding of how different 
environments, sensor types, and environmental factors affect 
the performance of virtual sensors. 
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