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A B S T R A C T   

Sensors used to monitor indoor environmental conditions and utility consumption can result in well-defined 
working and living spaces. Real-time spatiotemporal occupancy detection techniques used to track humans in-
doors paired with these data can be used to better understand the role of occupants on indoor air quality and 
building energy consumption. This study introduces a novel occupancy sensing technique whereby a chair-based 
temperature sensor array is used to detect the presence of occupants seated in a living laboratory open-plan 
office. Seat surface temperatures were tracked for twenty individuals over seven months using K-type thermo-
couples with battery-powered dataloggers secured to office chairs in known locations. The temperature differ-
ential between the occupant and seat surface enables for rapid conduction and thus detection of one’s seated 
presence. Seat surface temperature time-series were converted to binary seated occupancy for each chair and 
totaled to achieve a spatial map of room seated occupancy with a time resolution of 15 s. Trends in spatio-
temporal seated occupancy profiles in the office were evaluated for seven months using the novel technique. This 
highly localized form of occupancy detection offers several advantages compared to delocalized sensing tech-
niques, including visualization of spatial occupancy patterns over time; determination of individual seated oc-
cupancy histories visualized in the form of “occupancy barcodes; ” quantification of total seated hours per 
occupant in different spatial zones across varying time-scales; and characterization of diurnal and weekly trends 
in seated occupancy probabilities categorized by an occupant’s relative level of presence.   

1. Introduction 

1.1. Motivation for occupancy detection in buildings 

Building design and operation intending to maximize occupant 
performance must more rigorously explore the complex relationships 
that exist when occupants interact with their built surroundings. An 
important element underlying this aim is the evaluation of human oc-
cupancy patterns in buildings. Occupancy detection enables for assess-
ment of human behavior and activity patterns. Such assessments can be 
used to better understand how people influence indoor air quality and 
building energy consumption. Integration of occupancy sensors with 
building automation systems offers a basis to provide personalized 
heating and cooling to improve occupant comfort and productivity 
[1–3]. Occupancy data can enable building systems to more accurately 
address ventilation and energy needs throughout the day. Establishing 

scalable systems for detecting human occupancy provides a foundation 
for optimizing indoor environmental quality and energy usage expen-
ditures through smart control of heating, ventilation, air conditioning, 
and lighting (HVAC&L) systems. 

Humans continually emanate bioeffluents and dissipate heat and 
moisture, thereby having a measurable impact on indoor environments. 
Monitoring occupancy patterns in buildings can help to better under-
stand how people alter the microbial and chemical composition of in-
door air. Concentrations of human-associated species are often 
correlated with occupancy levels and tend to scale with the number of 
occupants in an indoor space for a fixed ventilation rate [4–7]. People 
continually shed bacteria and fungi from their skin and clothing and 
stir-up settled dust from indoor surfaces via resuspension as they move 
around [6,8–11]. Occupants are the primary source of carbon dioxide 
(CO2) indoors. CO2 is a major constituent of exhaled breath and the most 
common surrogate for occupancy. In addition to CO2, the human body 
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releases hundreds of volatile organic compounds (VOCs) via exhaled 
breath, skin secretions, squalene ozonolysis, and personal care products 
[12–20]. Measured species concentrations can be integrated with oc-
cupancy data to determine emission or generation rates per person in 
order to quantify the impact of humans on indoor air quality [17,21,22]. 
Occupancy monitoring offers a basis for improved population exposure 
assessment for indoor air species that can adversely affect respiratory 
and cardiovascular health, impair cognitive function and decision 
making, and cause fatigue, headache, and sleepiness [23–26]. 

Given the prominent role humans play in altering the composition of 
indoor air, real-time occupancy detection is an important element in 
mechanical ventilation control strategies for buildings. Ventilation 
standards, such as ANSI/ASHRAE Standard 62.1–2019, outline the 
volumetric flow rate of filtered outdoor air per person that must be 
delivered to an occupied space to maintain acceptable concentrations of 
indoor air species [27]. In indoor spaces where occupancy patterns are 
temporally variant, such as open-plan offices, meeting rooms, common 
areas, and classrooms, the outdoor air ventilation rate should be 
dynamically modulated to prevent the accumulation of 
human-associated CO2, VOCs, and particles. Demand controlled venti-
lation (DCV) is one technique that addresses the need for 
occupant-driven outdoor air ventilation requirements in small- and 
large-scale office buildings by introducing more filtered outdoor air into 
a room when more people are present. In addition to affecting indoor air 
quality, implementation of DCV offers benefits in regard to energy 
savings [28], which have been found to range from 8 to 80%, depending 
on the season, location, and worker schedules [29]. 

Occupancy-based control of HVAC&L systems in buildings can 
enable for optimization of indoor environmental quality and energy 
usage by considering worker needs and schedules rather than by 
applying a one-size-fits-all timetable. Real-time occupancy sensing is 
therefore an important element in achieving human-centered building 
design and operation. Given the diversity of indoor environments and 
complexity of human behavior patterns, predicted occupancy profiles do 
not always align with actual occupancies. This can result in the heating, 
cooling, and artificial illumination of vacant rooms [30,31], or 
conversely, insufficient conditioning or ventilation of over-occupied 
spaces. Live occupancy trends at the room- and building-scale offers 
the potential for energy savings through more intelligent control over 
HVAC&L operations [2,31–35]. Demand-driven control in smart build-
ings can be tailored to a specific indoor environment either through 
real-time automation or short-term learning to predict occupancy pat-
terns and adjust setpoint schedules accordingly. In addition to HVAC&L 
control, robust occupancy data is an important input for indoor air 
quality and building energy models that consider the impact of people 
on shaping their proximate indoor environments [36]. 

Smart control of HVAC&L systems that more deeply considers oc-
cupancy patterns and individual preferences necessitates development 
and integration of occupancy sensing techniques that consider specific 
environments and predict their end-use format. Wireless devices inter-
acting with each other and a central hub via the Internet of Things (IoT) 
brings an interconnectedness between building control, sensors, and 
room conditions that enables for optimal control based on immediate 
occupant feedback [33,37,38]. Localized occupancy sensing platforms 
that monitor an individual’s occupancy time-series can be integrated 
with IoT-based building automation systems to achieve occupant-centric 
indoor spaces. 

Occupancy detection has applications beyond indoor environmental 
quality and building energy use. Seated occupancy sensing can inform 
time spent in sedentary activities indoors, such as working in front of a 
computer. Sedentary activities have been estimated to require 30–50% 
less energy than standing-related or more intense actions; and more time 
spent seated can offset the benefits of routine exercise. In office envi-
ronments, studies have shown that workers sit longer than recom-
mended – for approximately 66–77% of their total work time [39–41] or 
4–9 h per day. Extensive sitting is likely to continue outside of the 

workplace [42]. The act of continuous sitting itself has detrimental ef-
fects on metabolism and mortality [43]. People who spend more time 
sitting are also those that spend less time active and tend to be older 
[44]. Explorations of seated times for workplace interventions intended 
to encourage physical activity during the workday often use 
thigh-attached or inclination-based accelerometers [43–47] and 
self-reporting techniques [42,48,49]. These studies advocate manage-
ment methods that encourage workers to perform certain tasks or 
furniture modifications, such as using stand-up desks, to facilitate more 
frequent standing and movements. Localized occupancy estimates 
combined with information about individual needs and indoor envi-
ronmental quality can inform building design and operation to mediate 
unwanted, unhealthy outcomes of occupant-office interactions. 

1.2. Occupancy sensing techniques 

Technological advancements resulting in smaller and more afford-
able sensors that measure concentrations of indoor air species, monitor 
indoor environmental conditions, track movement, register images, 
detect electronic devices, and assess seat parameters have allowed a 
plethora of investigation into people and their effects on building 
management. Methods used to understand the relationship between 
occupants and the indoor environment ideally determine the count, 
location, behavior, and timing of people in a given space, often using a 
combination of sensors. Papers by Horr et al. (2016), Labeodan et al. 
(2016), and Yang et al. (2016) have recently surveyed occupancy 
sensing techniques for buildings [50–52]. Most sensing techniques can 
accurately detect presence or room count to a high degree with the right 
understanding of a room setup and using well-tuned algorithms to match 
sensor output to occupant counts. Utilizing training data, machine 
learning, or a combination of sensors often improves the accuracy of the 
technique employed. 

One of the most common forms of occupancy detection in buildings 
is CO2 sensing. CO2 sensors are frequently integrated with DCV [37,50, 
53–61]. Complete mixing of CO2 in an occupied space is often assumed 
and steady-state CO2 concentrations are commonly estimated using 
constant CO2 generation rates per person and constant outdoor air 
concentrations [62]. While CO2-based occupancy sensing has been 
shown to estimate occupancy with accuracies ranging from 55 to 95% 
[54], notable assumption flaws in using CO2-driven ventilation suggest a 
need for improved occupancy sensing techniques. These uncertainties 
include but are not limited to occupancy detection time delay [51]; 
sensor error in determination of accurate CO2 concentrations; occu-
pancy mischaracterization due to sensor placement within a room [63]; 
variable outdoor air conditions; overgeneralizing outdated CO2 gener-
ation rates for different levels of physical activity [62]; health-based CO2 
concentration thresholds [64]; and poor prediction of concentrations of 
other human-associated species, such as VOCs and particles [39]. The U. 
S. Department of Energy notes that CO2-based DCV introduces a period 
of lag and an occupancy buffer where extra outdoor air is delivered to 
unoccupied spaces [65]. CO2 is commonly measured at one location per 
room, thereby preventing determination of spatial occupancy patterns 
within the room. Modeling techniques to improve the accuracy of 
CO2-based occupancy sensing have been proposed [60]. In addition to 
CO2, concentrations of human-associated VOCs and particles can be 
used to evaluate temporal occupancy patterns [9,10,17,21,58,66–68]. 

Occupancy sensing techniques relying on physical movement 
include traditional usage of passive infrared (PIR) for light automation 
and multiple sensors placed in doorways that count instances of pres-
ence and determine directionality to estimate total occupancy [54,58, 
69–72]. Cameras have been used in a similar manner, however, they 
may illicit questions of privacy [54,69,73,74]. Acoustics have been used 
to infer occupancy, both by exploring the novel use of filtered 
speech-based audio and by looking at general room noise [37,58,75,76]. 
Additional indoor environmental parameters that have been tested to 
detect occupant presence include indoor air temperature and relative 
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humidity and light [54,58,77]. 
Device-centered occupancy sensing assumes that people are contin-

ually “plugged in” to their electronics. Device detection methods are 
based on the tracking of WiFi and Bluetooth signals via Media Access 
Control (MAC) and Internet Protocol (IP) addresses. A spatial map of 
electronic devices in an indoor space can be generated based on each 
device’s distance from a grid of receivers correlated with signal strength 
[35,73,77–79]. Once enabled, delocalized sensors can continuously 
yield relatively accurate zone-based occupancy patterns over time, 
however, they may not always identify exact placement in a building 
due to variations in electronics and room environments [60,62,73,77]. A 
similar exploration of literal human detection was proven to detect radio 
wave emissions from people [80,81]. 

Seat- or chair-based occupancy determination enables for multi- 
point tracking of occupants within an indoor space. Due to the sensi-
tivity of movement when one sits, chairs have been successfully outfitted 
with sensors based on acceleration to monitor seated occupancy and to 
identify seated activities [46,47]. Capacitance and micro-switch-based 
pressure have also been used to note when an individual is present 
with detection accuracy ranging from 80 to 100% depending on the 
room and sensor setup [34,53,78,82–84]. Using arrays of these sensors 
can help determine where a seated person is within a room, as well as an 
individual’s posture or specific activities [85–89]. When individual lo-
cations are known at given times, the total seated occupancy can then be 
calculated. While accurately detecting occupant presence, pressure 
sensors may overestimate seated occupancy when inanimate, non-living 
objects are placed in seats [90]. People may place blankets, backpacks, 
and other items in car seats and classroom and office chairs; therefore, 
using a sensor that is more adept to specifically sensing humans avoids 
false-positives due to item storage. Occupant self-reporting has been 
used to supplement chair-based sensor measurements and introduces 
biases of occupancy timing by underreporting absences [91]. 

1.3. A chair-based temperature sensor array for spatiotemporal 
occupancy detection in offices 

This study investigates the use of a chair-based temperature sensor 
array for spatiotemporal occupancy detection in open-plan offices. The 
use of chair-based temperature sensors (e.g. thermocouples) to monitor 
seated occupancy in buildings has not been previously explored to the 
best of the authors’ knowledge. The temperature differential between a 
seated person and seat cushion enables for rapid heat transfer via 

conduction and thus detection of one’s seated presence. Thermocouples 
embedded in, or attached to, chair cushions are a viable option to 
determine seated occupancy in indoor environments where people are 
seated the majority of the time, such as offices, classrooms, theaters, and 
public transportation. Russell et al. (2017) used arrays of thermocouples 
embedded in seat cushions to detect seated postures, demonstrating a 
thermocouple’s sensitivity to someone sitting, standing, and reposi-
tioning in one’s seat [86]. 

The primary objective of this study is to introduce a novel technique 
for highly localized occupancy sensing in offices – a chair-based tem-
perature sensor array – and demonstrate the utility of the technique in 
evaluating spatiotemporal seated occupancy profiles through a 7-month 
measurement campaign in a living laboratory open-plan office. K-type 
thermocouples were appended to the seat cushions of twenty office 
chairs in known locations (Fig. 1). The paper first presents the meth-
odology for converting seat surface temperature time-series to binary 
seated occupancy and then aggregating across the entire office to 
determine the total seated occupancy in the room. The paper then dis-
cusses how the technique enables for detailed assessment of both spatial 
and temporal seated occupancy patterns in the office over varying time- 
scales. 

2. Material and methods 

2.1. Chair-based temperature sensing in a living laboratory open-plan 
office 

Occupancy measurements with the chair-based temperature sensor 
array were conducted in the Herrick Living Laboratories of the Center 
for High Performance Buildings at Purdue University in West Lafayette, 
Indiana from February 10 to August 31, 2019. The Living Labs are four 
nearly identical, side-by-side large open-plan office spaces for graduate 
students with reconfigurable and precisely controlled envelope, light-
ing, and thermal systems. The chair-based temperature sensor array was 
deployed in the Living Lab office that regularly contained the highest 
number of occupants. The office contained 20 assigned desks and chairs 
arranged as a grid of 4 rows with 5 desks each (Fig. 1) (L: 10.50 m, W: 
9.9 m, H: 4.60 m). Each desk and chair were given a numeric ID of 1 
through 20 to ensure desk-chair location continuity and to de-identify 
data. It is assumed the same person was assigned a given desk-chair 
pair for the entirety of the measurement campaign. Observations indi-
cated the occupants remained seated, aside from short periods of 

Fig. 1. (left) photo of a Living Lab office 
chair configured with a fabric-covered K- 
type thermocouple connected to a battery- 
powered datalogger and (right) illustration 
of the chair-based temperature sensor array 
in the Living Lab open-plan office. Each seat 
surface temperature sensor node is shown in 
red. The associated numeric ID (1–20) for the 
given desk-chair pair location is listed, along 
with the desk row number (1–4). (For inter-
pretation of the references to color in this 
figure legend, the reader is referred to the 
Web version of this article.)   
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standing entry and exit and group discussions. As such, all results pre-
sented herein are referred to as “seated occupancy” for correctness. 

The chair-based temperature sensor array was created by configuring 
each chair with a K-type epoxy coated tip thermocouple (TC-PVC-K-24- 
180, Omega Engineering Inc.) connected to a battery-powered data-
logger (EasyLog EL-USB-TC, Lascar Electronics Inc.). The thermocouple 
was positioned at the middle of the upward-facing seat cushion and 
attached to the cushion with double-sided fabric tape (Fig. 1). The cable 
was directed to the rear of the chair and covered with fabric tape of the 
same color as the cushion. The datalogger was attached to the bottom of 
the chair cushion with Velcro to enable for repetitive removal for data 
acquisition twice per week. Seat surface temperatures (in ◦C) for all 20 
chairs were recorded with 15-s time resolution for the duration of the 7- 
month occupancy measurement campaign, aside from a 1.5-week period 
in mid-July 2019 (parts of weeks 29 and 30). 

2.2. Determination of seated occupancy via seat surface temperature 
profiles 

Measured seat surface temperature time-series, Tm(t), were used to 
determine seated occupancy time-series with 15-s time resolution for 
each chair within the spatial grid of the Living Lab office (Fig. 1). The 
measured seat surface temperatures were compared to the median seat 
surface temperature for each chair, Tm, calculated for a given data 
acquisition period (3–4 days). Here, Tm is treated as the background seat 
surface temperature given that the chairs were occupied for approxi-
mately one-third or less of the total measurement period. The range of 
Tm was generally between 22 and 23 ◦C throughout the measurement 
campaign. 

Tm(t) was referenced to Tm to enable for additional reduction of the 
seat surface temperature time-series. This reduction step was done to 

facilitate occupancy determination whereby sudden increases in the seat 
surface temperature above Tm, often approaching and exceeding 30 ◦C, 
were attributed to occupant seated presence due to heat transfer via 
conduction from the person to the chair surface. Reduced seat surface 
temperature time-series, Tr(t), were computed as follows: 

Tr(t) =

⎧
⎨

⎩

Tm, if Tm(t) ≤
(

Tm + 3◦C
)

Tm(t), if Tm(t) >
(

Tm + 3◦C
) (1)  

Tr(t) was used to create a binary seated occupancy time-series, Os(t), for 
each chair, with 0 indicating absence of the occupant and 1 indicating 
seated presence of the occupant. During periods of stable seated occu-
pancy, Tr(t) is often between 34 and 36 ◦C. Binary seated occupancy for 
each chair was calculated with 15-s time resolution as follows: 

Os(t) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0, if Tr(t) = Tm
1, if Tr(t) > Tm

0, if Os(t) = 1 and Tm < Tr(t + Δt) < 30◦C
(2) 

The third criteria accounts for sudden decreases in the seat surface 
temperature when a person stands up following a period of seated oc-
cupancy (e.g. Fig. 2a at 17:00). During such conditions, Tr(t) can remain 
above Tm u ntil the seat surface temperature decays to background. 
Thus, Os(t) is corrected from 1 to 0 when Tr(t+Δt) falls below 30 ◦C, 
while remaining above Tm, where Δt is equal to one sampling interval of 
15 s. Binary seated occupancy time-series for each chair within the 
spatial grid of the Living Lab office were computed for the duration of 
the 7-month occupancy measurement campaign. It is assumed that 
seated occupants remained in direct contact with the thermocouple 
during periods of seated occupancy and that people are the only heat 

Fig. 2. Example of binary seated occupancy 
determination via chair-based temperature 
sensing for one chair in the open-plan office: 
(a.) one-day measured seat surface tempera-
ture time-series, Tm(t), (b.) one-day reduced 
seat surface temperature time-series, Tr(t)
(left y-axis) and one-day binary seated oc-
cupancy time-series, Os(t) (right y-axis), (c.) 
four-day measured seat surface temperature 
time-series, Tm(t), and (d.) four-day reduced 
seat surface temperature time-series, Tr(t)
(left y-axis) and four-day binary seated oc-
cupancy time-series, Os(t) (right y-axis). 
Os(t) = 0 for seated absence and Os(t) = 1 for 
seated presence. The blue bands in (b.) and 
(d.) are bounded by Tm (lower) and Tm + 3◦C 
(upper), where Tm = 23 ◦C. (For interpreta-
tion of the references to color in this figure 
legend, the reader is referred to the Web 
version of this article.)   
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source in direct contact with the chair cushion. Periodic manual 
reporting of binary seated occupancy was conducted to guide the criteria 
established in Equations (1) and (2) and to verify the accuracy of the 
occupancy determinations derived from the seat surface temperature 
data. 

The total seated occupancy in the Living Lab office, Os,total(t), was 
taken as the sum of the binary seated occupancies for each of the 20 
chairs: 

Os,total(t) =
∑Seat 20

Seat 1
Os(t) (3)  

3. Results 

3.1. Spatial and temporal seated occupancy data analysis and 
visualization 

The chair-based temperature sensor array was deployed in the Living 
Lab office for 7 months to evaluate the utility of the new occupancy 
sensing technique in tracking seated occupancy patterns at varying 
spatial scales (chair, row, room) and temporal scales (hour, day, week, 
month). Regarding spatial occupancy monitoring in an open-plan office 
environment, this highly localized form of occupancy detection pre-
sented several unique attributes compared to delocalized sensing tech-
niques, such as a single CO2 or door PIR sensor per office. First, 
individual seated occupancy histories were calculated for each of the 20 
desk-chair pairs for the duration of the measurement campaign. The 
binary Os(t) time-series for each chair (0–1) were visualized in the form 
of “occupancy barcodes” to provide a basis to identify long-term, month- 
to-month trends in seated occupancy (Fig. 3). Second, the Os(t) time- 
series for each chair were integrated with respect to time, 

∫
Os(t) dt, to 

quantify the total seated hours per occupant in different spatial zones 
(chair, row) across varying time-scales. As the desk-chair pairs were 
assigned to 20 occupants and arranged in a grid of 4 rows with 5 desks 
each (Fig. 1), this enables for creation of spatial maps of the total time 
seated in each chair for each month and for the entirety of the mea-
surement campaign (Fig. 4). 

Third, diurnal and weekly trends in the total seated occupancy, 

Os,total(t), were characterized at the spatial-scale of the entire room. 
Diurnal trends in Os,total(t) were aggregated to calculate mean and me-
dian characteristic seated occupancy profiles for the office for weekdays 
(Monday to Friday) and weekends (Saturday and Sunday) (Fig. 6). 
Fourth, as this technique tracks chair-specific seated occupancy patterns 
in a shared, multi-user indoor workspace, individual occupancy trends 
(Os(t)) can be compared to the combined whole (Os,total(t)). Each of the 
20 chairs were ranked based the occupant’s relative level of seated 
presence over the measurement campaign as follows: (1.) high: seated 
occupancy greater than the 80th percentile, (2.) medium: seated occu-
pancy between 20th and 80th percentiles, and (3.) low: seated occu-
pancy less than the 20th percentile (Fig. 9). Diurnal and weekly seated 
occupancy profiles were calculated for each of the three categories to 
demonstrate how this sensing technique can be used to cluster occupants 
based on relative time spent in the office. 

3.2. Evaluation of binary seated occupancy determination via chair-based 
temperature sensing 

Binary seated occupancy time-series, Os(t), were calculated from 
measured seat surface temperature time-series, Tm(t), for each of the 20 
chairs in the Living Lab office for the duration of the 7-month mea-
surement period. Fig. 2 shows measured (Tm(t)) and reduced (Tr(t)) seat 
surface temperature profiles and the corresponding Os(t) for one chair 
over two time-scales (1 day and 4 days). Fig. 2 serves as an illustrative 
example of the temporality in Tm(t) and Tr(t) and how Tr(t) was con-
verted to Os(t). The blue band in Fig. 2b and d is bounded by Tm and 
Tm + 3◦C, both of which are used to define the reduction from Tm(t) to 

Tr(t). For Tm(t) >
(

Tm + 3◦C
)

, both the measured and reduced tem-

peratures are identical, whereas for Tm(t) ≤
(

Tm + 3◦C
)

, the reduced 

temperature transitions to Tm. 
It can be seen that the reduction from Tm(t) to Tr(t) coverts back-

ground seat surface temperatures to a constant Tm, thereby aiding in 
identification of seated periods when Tr(t) > Tm. When an occupant sits 
on the seat cushion of a chair, Tr(t) tends to rise logarithmically from Tm 
to over 30 ◦C. During continued seated occupancy in the chair, temporal 

Fig. 3. Occupancy barcodes: chair-specific binary seated occupancy histories, Os(t), for each of the 20 desk-chair pairs from February 10 to August 31, 2019 
visualized in the form of “occupancy barcodes.” Os(t) = 0 for seated absence and Os(t) = 1 for seated presence. MOY = month of the year. 
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fluctuations in Tr(t) are minimal and temperatures generally remained 
in the range of 34–36 ◦C. Standing initiates an exponential decay in Tr(t)
back to Tm. The temporal profiles of Tm(t) and Tr(t) shown in Fig. 2 are 
representative of those measured throughout the occupancy sensing 
campaign for all 20 chairs. 

The sudden rise and decay in the seat surface temperature at the 
beginning and end of a seated occupancy period, respectively, demon-
strates the temporal sensitivity in seated occupancy sensing with a chair- 
based temperature sensor array. This is due in part to rapid heat transfer 
via conduction between the occupant and chair-appended thermocouple 
that occurs when one sits on the cushion. As shown in Fig. 2, the moment 
when Tr(t) > Tm, the Os(t) transitions step-wise from 0 (unoccupied 
chair) to 1 (occupied chair). Similarly, it can be seen that Os(t) transi-
tions from 1 to 0 when Tr(t) falls below 30 ◦C following the criteria 
established in Equation (2). 

The seated occupancy profiles shown in Fig. 2 illustrate the stability 
of chair-based temperature sensing in monitoring continuous seated 
occupancy over extended periods (e.g. > 1 h) and in detecting transient 
periods of chair presence and absence. For example, in Fig. 2b between 
16:00 and 19:00, two short unoccupied periods were observed to occur 
between longer, occupied periods. Negligible lag and high time- 
resolution suggest this approach can be suitable for integration with 
DCV and other HVAC&L control strategies for open-plan workspaces 
where prompt adjustments to the indoor environment are needed in 
response to individual, chair-specific occupancy changes. 

3.3. Spatial seated occupancy trends determined via a chair-based 
temperature sensor array 

The chair-based temperature sensor array enabled for evaluation of 
spatial seated occupancy trends in the Living Lab office over the 7- 
month measurement campaign (Figs. 3 and 4, and S1-S5). The chair- 
based temperature sensor array provides highly localized occupancy 
detection by monitoring the seated presence of an occupant at a known 
desk-chair pair location within the spatial grid of the open-plan office 
illustrated in Fig. 1. Chair-specific binary seated occupancy time-series, 
Os(t), and total seated hours over varying temporal scales, 

∫
Os(t) dt, are 

presented in Figs. 3 and 4, respectively. Both Os(t) and 
∫

Os(t) dt are 
visualized in the same spatial grid as that of Fig. 1, with 4 rows of 5 seats 
each. For example, seat 13 is lateral to seats 12 and 14, and is also 
directly opposite to seat 18. Seats 5, 10, 15, and 20 are adjacent to a 
double-skin façade, and seats 1 and 6 are proximal to the entrance of the 
office space. 

3.3.1. Occupancy barcodes: chair-specific binary seated occupancy 
histories 

To demonstrate a unique application of the chair-based temperature 
sensor array, individual seated occupancy histories were calculated for 
each of the 20 desk-chair pairs and visualized in Fig. 3 in the form of 
“occupancy barcodes.” Each of the 20 sub-plots in Fig. 3 presents the 
binary seated occupancy time-series, Os(t) (0–1), for each chair over 7 

Fig. 4. Total seated hours, 
∫

Os(t) dt, for each desk- 
chair pair location: (a.) mean daily seated hours for 
weekdays in March 2019, (b.) total seated hours for 
March 2019, (c.) mean daily seated hours for week-
days in July 2019, (d.) total seated hours for July 
2019, (e.) mean daily seated hours for weekdays from 
February 10 to August 31, 2019, and (f.) total seated 
hours from February 10 to August 31, 2019. Time 
seated (h) is denoted in each color bar. Values of zero 
were used to replace values that were < 0.1 h for the 
month. (For interpretation of the references to color in 
this figure legend, the reader is referred to the Web 
version of this article.)   
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months. Each parallel vertical line indicates the beginning or end of a 
seated occupancy period, in the same manner as the Os(t) visualization 
presented for a single chair in Fig. 2b and d. 

The spatial grid of 20 individual seated occupancy barcodes provides 
insights into month-to-month variations in chair-specific occupancy 
patterns for the open-plan office. Denser collections of vertical lines 
indicate more frequent seated presence at a given desk-chair pair loca-
tion. Thus, the barcodes offer a useful visual tool for analyzing long- 
term, spatially-resolved fluctuations in seated occupancy for a shared 
indoor workspace. Barcodes for seats 4, 6, 9, 16, 17, and 19 reveal a 
pattern of frequent seated occupancy over 7 months. Conversely, barc-
odes for seats 3, 5, 13, and 14 display infrequent seated presence during 
the measurement campaign. Selected seats exhibit pronounced month- 
to-month variation in seated occupancy. For example, the barcode for 
seat 15 displays low seated occupancy from February to April, with a 
transition to more frequent seated occupancy between May and June. 
Similarly, the barcode for seat 12 reveals a sudden drop in seated oc-
cupancy in May, with more regular occupancy in adjacent months. Finer 
temporal gradients in seated occupancy can be observed in the barcodes. 
A gradual shift in seated presence in the barcode for seat 8 can be seen 
between April and May. 

3.3.2. Spatial mapping of total seated hours per occupant 
Integration of the chair-specific binary seated occupancy time-series, 

Os(t), presented in the occupancy barcodes provides temporally- 
resolved snapshots of total seated hours, 

∫
Os(t) dt, for each desk-chair 

pair location. Fig. 4 provides a spatial map of mean daily seated hours 
for weekdays and total seated hours for March 2019 (Fig. 4a and b), July 
2019 (Fig. 4c and d), and for the entirety of the 7-month occupancy 
sensing campaign (Fig. 4e and f). Spatial maps for February, April, May, 
June, and August 2019 are provided in Figs. S1–S5. Mean daily and total 
seated hours for each desk-chair pair location are listed within each 
square of the spatial grid of the Living Lab office. The relationship be-
tween the color of each desk-chair pair location and time seated is shown 
in each color bar. 

Spatial variations in time seated throughout the open-plan office can 
be observed in Fig. 4 and S1-S5. Desk-chair pairs with high seated oc-
cupancy are readily identified. For example, in March 2019, seats 4 and 
7 (yellow/light orange squares) are associated with mean daily seated 
hours of 6.4 and 6.7 h, respectively, and total seated hours of 130 and 
140 h, respectively; comparatively greater than other seats in the office. 
Likewise, seats with low to no seated occupancy can be quickly deter-
mined. In July 2019, seats 1, 3, 5, 10, 13, and 14 (dark blue squares) 
were found to have total monthly seated hours of less than 10 h. 

The chair-based temperature sensor array offers a basis to monitor 
changes in spatially-resolved office usage schedules for individual oc-
cupants. Spatial variability in seated hours exhibits some month-to- 
month variation between February and August 2019 (Fig. 4 and S1- 
S5). This can be evaluated in part by considering the month-to-month 
variation in total seated hours for a given desk-chair pair. From 
February to August 2019, seat 4 transitions month-to-month from 57 to 
130 to 140 to 72 to 82 to 88 to 85 h; and seat 20 varies month-to-month 
from 29 to 51 to 72 to 81 to 93 to 26 to 21 h. 

The month-to-month variations in total seated hours presented in 
Fig. 4 and S1-S5 are consistent with the binary seated occupancy time- 
series shown in Fig. 3. The high density of vertical lines in the barc-
odes for seats 4, 6, 9, 16, 17, and 19 are associated with a greater number 
of total seated hours during the 7 month campaign: 660, 500, 480, 690, 
440, and 430 h, respectively. Similarly, the infrequent seated occupancy 
presented in the barcodes for seats 3, 5, 13, and 14 are associated with 
the lowest number of total seated hours during the 7-month campaign: 
77, 130, 35, and 47 h, respectively. The month-to-month variations shed 
light on differences in graduate student office attendance due to the 
academic semester structure for the spring, incorporating the months of 
February through mid-May 2019, and summer, incorporating the 

months of mid-May to mid-August 2019. In comparing March and July 
2019 in Fig. 4, the open-plan office sees comparatively lower usage 
during the summer semester than the spring semester, with 16 out 20 
seats showing a drop in seated presence. Figs. S1–S5 suggest that similar 
patterns in seated occupancy exist between the two semesters. Such 
differences can be explained by considering semesterly changes in 
course schedules, research activities, travel, and remote work. The 
insight gained from such variation patterns gives a general picture of the 
room usage throughout the year. Identifying these patterns in specific 
contexts can aid commercial management and decision-making in 
buildings to plan office space allocation and predict worker needs. 
Modern employment situations that allow employees to work remotely 
can save money by allocating a certain period of time for the offices to be 
open. 

For the Living Lab office, there does not appear to be a meaningful 
relationship between seat location and seated occupancy frequency 
(Fig. 3) and total time seated (Fig. 4). Rather, seated presence is likely to 
depend on individual working schedules of the office occupants. In 
addition, there does not appear to be clustering of high or low occupancy 
seats adjacent to one another or along a given row or column of desks 
within the open-plan office grid. 

3.4. Temporal seated occupancy trends determined via a chair-based 
temperature sensor array 

The chair-based temperature sensor array enabled for evaluation of 
temporal trends in the total seated occupancy of the Living Lab office, 
Os,total(t), over the 7-month measurement campaign (Figs. 5–9). The 
binary seated occupancies for each of the 20 desk-chair pairs were 
summed to determine Os,total(t) with 15-s time resolution. Diurnal 
(Figs. 5–7) and weekly (Figs. 8–9) trends in Os,total(t) were characterized 
to demonstrate the usefulness of chair-based temperature sensing in 
monitoring occupancy profiles at the spatial-scale of the entire room. 

The sampling period began towards the end of winter and continued 
through the spring and summer. Although the office air temperature 
profile remained relatively constant, the outdoor air temperatures var-
ied from about − 12 ◦C to 27 ◦C during this period [92]. Occupant 
clothes were not directly observed for the study; however, it can be 
assumed that clothing styles would vary seasonally. To explore the effect 
of seasonal clothing on the accuracy of the chair-based temperature 
sensor array, the median seat surface temperature was calculated for 
three occupants that showed similar relative occupancy levels 
throughout February, May, and August. The median temperatures for 
seats 9, 15, and 16 for occupied and unoccupied periods are shown in 
Table 1. From the colder to warmer months, there is a slight increase in 
occupied seat surface temperature, with less change in median tem-
perature for unoccupied periods. Is likely that students wore relatively 
similar clothing while in the office, which may have varied with length 
and thickness; however the measurements were consistent in being able 
to detect seated presence across the seasons. This result confirms pilot 
tests done to explore the threshold of sensing. Pilot tests showed that 
adding layers and thick blankets to seats may delay the binary seated 
occupancy detection, as the seat temperature would rise more slowly. 

3.4.1. Diurnal seated occupancy profiles in an open-plan office 
Day-to-day variations in the diurnal total seated occupancy 

(Os,total(t)) profile for the Living Lab office over 7 months is shown in 
Fig. 5. Each row illustrates the temporality in Os,total(t) (0.5 h average) 
for a given day of the year (DOY, 2019). The relationship between the 
color for a 0.5 h period and the total seated occupancy is shown in the 
color bar. The temporal map in Os,total(t) provides a basis to observe long- 
term trends in room-aggregated seated presence for an open-plan office. 
The white regions represent periods when seat surface temperature 
measurements were not conducted. 

The chair-based temperature sensor array captured daily fluctuations 
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in the magnitude of the diurnal Os,total(t) profile throughout the mea-
surement campaign (Fig. 5). From approximately DOY = 41 (February 
10, 2019) to DOY = 90 (March 31, 2019) and from DOY = 138 (May 18, 
2019) to DOY = 190 (July 09, 2019), Os,total(t) periodically reaches a 
maximum of 8–12 seated occupants (green/yellow/light orange bands) 
between 12:00 and 16:00. Conversely, from April to mid-May 2019 and 
in August 2019, the peak total seated occupancy in the afternoon was 
often less than 6 (cyan bands). Day-to-day variations in the magnitude of 
Os,total(t) were less common in the late afternoon and evening (16:00 to 
24:00) and during the early morning (00:00 to 10:00). During these 
periods, Os,total(t) generally remained below 2 (dark blue bands). Day-to- 
day variations in Os,total(t) shown in Fig. 5 are consistent with the tem-
poral variations in Os(t) observed in Fig. 3. 

Similarities in the shape of the diurnal Os,total(t) profile can be 
observed in Fig. 5. Total seated occupancy in the Living Lab office nearly 
always reached its peak between the hours of 12:00 to 16:00, 

irrespective of the day of the week (weekday or weekend), week, or 
month. This peak in Os,total(t) during the afternoon can be readily 
observed by following the incremental increase in Os,total(t) (transition in 
color gradient) from morning to afternoon to evening. It can be seen that 
the shape of the diurnal Os,total(t) profile remains flat at, or close to, 
0 (dark blue) during the non-traditional work periods in the late eve-
ning/early morning hours of 23:00 to 08:00. As illustrated in Fig. 5, 
monitoring long-term trends in the diurnal Os,total(t) profile with chair- 
appended thermocouples provides a basis to understand how the 
room-aggregated usage profiles of a collaborative open-plan office 
environment change over varying time-scales. 

Diurnal trends in Os,total(t) for each DOY were aggregated to calculate 
mean and median characteristic seated occupancy profiles with 15-s 
time resolution for the office for weekdays (Monday to Friday) and 
weekends (Saturday and Sunday) during the spring (February 10 to 
April 31, 2019) and summer (May 01 to August 31, 2019) academic 

Fig. 5. Diurnal trends in the total seated occupancy, Os,total(t), from February 10 to August 31, 2019. Os,total(t) is denoted in the color bar. DOY = day of the year. 
White regions represent periods when seat surface temperature measurements were not conducted. (For interpretation of the references to color in this figure legend, 
the reader is referred to the Web version of this article.) 
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semesters (Fig. 6). The dashed blue lines indicate the mean Os,total(t), the 
solid black lines indicate the median Os,total(t), and the yellow and green 
lines indicate the 25th and 75th percentiles, respectively. The charac-
teristic profiles in total seated occupancy are unique to the Living Lab 
office, where graduate students follow flexible and course- and research- 
dependent work schedules. Total seated occupancy trends observed for 
this office confirm that different contexts can shift the times and mag-
nitudes that people are present in a such an indoor space. 

The characteristic diurnal Os,total(t) profiles (both mean and median) 
for weekdays (Fig. 6a and c) exhibit a trimodal shape, with a prominent 
peak in room occupancy at around 16:00 and secondary peaks at around 
12:00 and 20:00. The prominent peak varies between Os,total(t) = 4 to 7 
during the spring semester, with a mean and median of approximately 

Os,total(t) = 5–6; and between Os,total(t) = 3 to 7 during the summer se-
mester, with a mean and median of approximately Os,total(t) = 4–5. The 
secondary peak at around 12:00 is preceded by a gradual buildup in total 
seated occupancy at a rate of approximately 1 additional seated occu-
pant per hour. Between 12:00 and 13:00, Os,total(t) drops by about 1 
during the spring semester and about 2 during the summer semester. 
From 13:00 to 16:00, the totaled seated occupancy gradually grows to 
the prominent peak, where it then follows a downward trend at a rate of 
roughly 0.6 to 0.7 seated occupants per hour to near 0 at 24:00. How-
ever, a small bump in seated occupancy can be seen at 20:00. The 
variation (25th to 75th percentile) in the weekday Os,total(t) is typically 
± 1 seated occupant about the median between 08:00 to 14:00 and 
17:00 to 24:00, and ±1 to 2 seated occupants about the median from 
14:00 to 16:00. The temporal variation in Os,total(t) during the weekdays 
is consistent with the day-to-day fluctuations in Os,total(t) observed in 
Fig. 5. 

The characteristic diurnal Os,total(t) profiles (both mean and median) 
for weekends (Fig. 6b and d) exhibit a unimodal shape, with a prominent 
peak at around 16:00. During the spring semester, the magnitude of the 
prominent peak is approximately Os,total(t) = 2 and during the summer 
semester, the magnitude tapers off to roughly Os,total(t) = 1. It is evident 
that the Living Lab office is consistently emptier during the weekends 
compared to the weekdays. 

3.4.2. Weekly seated occupancy profiles in an open-plan office 
Weekly total seated occupancy (Os,total(t)) profiles (Monday through 

Sunday) for the Living Lab office over 7 months are shown in Fig. 8. 
Similar to Fig. 5, each row illustrates the temporality in Os,total(t) (0.5 h 
average) for a given week of the year (WOY, 2019). The relationship 
between the color for a 0.5 h period and the total seated occupancy is 
shown in the color bar. The white regions represent periods when seat 
surface temperature measurements were not conducted. Fig. 8 offers an 
alternative visualization of temporal trends in the total seated occu-
pancy as compared to Figs. 5 and 6 and provide a basis to observe of how 

Fig. 6. Characteristic total seated occupancy profiles, 
Os,total(t), for: (a.) weekdays from February 10 to April 
31, 2019, (b.) weekends from February 10 to April 31, 
2019, (c.) weekdays from May 01 to August 31, 2019, 
(d.) weekends from May 01 to August 31, 2019. The 
dashed blue lines indicate the mean Os,total(t), the solid 
black lines indicate the median Os,total(t), and the 
yellow and green lines indicate the 25th and 75th 
percentiles, respectively. (For interpretation of the 
references to color in this figure legend, the reader is 
referred to the Web version of this article.)   

Fig. 7. Weekday occupancy diversity factors: Living Lab seated occupancy di-
versity factor for a room capacity of 20 seats (left y-axis) and occupancy di-
versity factor following ASHRAE 90.1 (right y-axis, via [70]). For the Living Lab 
diversity factor: the dashed blue lines indicate the mean, the solid black lines 
indicate the median, and the yellow and green lines indicate the 25th and 75th 
percentiles, respectively. (For interpretation of the references to color in this 
figure legend, the reader is referred to the Web version of this article.) 
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occupancy changes with the day of the week. 
Month-to-month and semesterly variations in the weekly Os,total(t)

profile can be seen in Fig. 8, mirroring those observed for Os(t) and 
∫

Os(t) dt in Figs. 3, 4, and S1-S5. Bands of elevated total seated occupancy 
(green/yellow/light orange) can be seen between Monday through 
Friday. In general, periods when Os,total(t) > 10 are less common on 
Friday compared to Monday through Thursday. The diurnal trend in 
Os,total(t) for a given day of the week is relatively consistent during the 7- 
month measurement campaign, however, some variability can be seen 
on Saturday and Sunday due to the more inconsistent work schedules on 
the weekends (see Fig. 6). 

3.4.3. Categorization of seated occupancy by relative presence 
As the chair-based temperature sensor array monitors seated occu-

pancy histories for each desk-chair pair, individual occupancy trends 
(Os(t), Fig. 3) can be compared to the aggregated whole (Os,total(t), Figs. 5 

and 8). While diurnal and weekly trends in Os,total(t) are most commonly 
reported for office environments, such room-scale occupancy profiles do 
not account for the unique seated occupancy schedules of each office 
occupant. It is evident through the individual seated occupancy barc-
odes displayed in Fig. 3 that each desk-chair pair is occupied in varying 
amounts, with some seats occupied significantly more (e.g. seats 16 and 
17) than others (e.g. seats 13 and 14). As discussed in Section 3.1, each 
chair was ranked as high, medium, or low according to the amount of 
time they were employed relative to the other seats, where n = 4 desk- 
chair pairs were ranked as high, n = 5 chairs were ranked as medium, 
and n = 11 as low. 

Fig. 9 presents the weekly profile (Monday through Sunday) in the 
seated occupancy probability for each category of relative presence 
(high: yellow, medium: cyan, and low: violet). The occupancy proba-
bility ranges from 0, where the likelihood of seated occupancy is null at a 
particular time, to 1, where the likelihood of seated occupancy is certain 

Fig. 8. Weekly trends in the total seated occupancy, Os,total(t), from February 10 to August 31, 2019. Os,total(t) is denoted in the color bar. WOY = week of the year. 
White regions represent periods when seat surface temperature measurements were not conducted. (For interpretation of the references to color in this figure legend, 
the reader is referred to the Web version of this article.) 
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at a particular time. Fig. 9 demonstrates how measuring chair-specific 
seated occupancy with a chair-based temperature sensor array can be 
used to cluster occupants based on relative time spent in the office, 
providing an extra layer of information beyond aggregated Os,total(t)
profiles. The temporal profiles in Fig. 9 can be interpreted as the prob-
ability of a seat in one of the categories as being occupied at a certain 
time, however a larger sample size or context-dependent measurements 
would be needed to more accurately represent other settings. 

Different diurnal and weekly seated occupancy trends emerge among 
the three categories of seated presence. The weekday diurnal seat oc-
cupancy probabilities for the high occupancy desk-chair pairs show a 
trimodal shape with three distinct peaks at approximately 12:00, 16:00, 
and 20:00. The medium seats are primarily unimodal in shape during 
the weekdays and the low seats have a less defined shape. The high 
category seats have occupancy probabilities reaching and exceeding 
0.50 during peak hours, whereas the medium category seats are likely to 
be occupied less than 50% of the time during weekday afternoons. Low 
category seats are much less likely to be occupied, with probabilities less 
than 0.25. 

All three categories show stronger seated presence during the 
weekdays, especially Monday through Wednesday, followed by a 
noticeable decrease on Thursday and Friday, and additional reduction 
on the weekend. The seats in the low occupancy category are occupied 
throughout the week in a seemingly unpredictable pattern, suggesting 
irregular use patterns of the Living Lab office. Conversely, seats in the 
high occupancy category follow a more recurrent office use schedule. 
Weekday occupancy probability distributions shown by Peng et al. 
(2017) yielded multi-person offices with notable bimodal distributions 
and several personal offices with less predictable schedules [30], similar 
to the low occupancy category for the Living Lab office. The offices 
studied in Ref. [30] also showed higher variety than multi-person offices 
for different days of the week. 

4. Discussion 

4.1. Applications of spatial seated occupancy detection in an open-plan 
office 

Monitoring the seated presence of individual occupants with chair- 
appended thermocouples, rather than the composite office population 
as is done with delocalized occupancy sensing techniques (e.g. a single 
CO2 or door PIR sensor per office), allows for the creation of a spatial 
grid of office use schedules over varying time scales (Figs. 3 and 4). Such 
spatial patterns can inform the regularity, or irregularity, of office oc-
cupancy among specific occupants or groups of occupants. Chair- 
resolved seated occupancy data can identify hourly, daily, weekly, and 
monthly trends in an individual’s use of a shared workspace. The high 
degree of variability observed in both Os(t) and 

∫
Os(t) dt among the 20 

desk-chair pairs in the Living Lab office suggest the need for monitoring 
individual occupancy trends in a modern open-plan office environment. 

The creation of spatial maps of Os(t) and 
∫

Os(t) dt enabled by the 
deployment of a chair-based temperature sensor array provides a basis 
to infer how chair-specific seated occupancy trends influence indoor 
environmental quality in a collaborative open-plan office. Tracking the 
historical presence of people seated in a room (Fig. 3) is useful for 
studying the long-term impact of thermal comfort, lighting, ventilation, 
and indoor air quality on productivity and health. Binary seated occu-
pancy time-series can be integrated with material balance models and 
per person emission rates to estimate concentrations of human- 
associated species, such as biological particles and VOCs. Individual 
occupancy trends can inform the contribution of a given occupant to the 
total concentration of a particular species. 

The spatial maps of Os(t) can be used with computational fluid dy-
namics simulations to model the spatial dispersion of human-associated 
species and subsequent inhalation exposure of seated receptors at 
varying distances from the seated source. Spatially-resolved tracking of 

Fig. 9. Weekly trends in the seated occupancy probability for each category of relative presence: high (top), medium (middle), and low (bottom). The occupancy 
probability ranges from 0, where the likelihood of seated occupancy is null at a particular time, to 1, where the likelihood of seated occupancy is certain at a 
particular time. 

Table 1 
Median seat surface temperatures for three desk-chair pairs during occupied and unoccupied periods.  

Seat No. February Median (◦C) May Median (◦C) August Median (◦C) 

Occupied Unoccupied Occupied Unoccupied Occupied Unoccupied 

9 33.1 21.9 35.5 23.5 35.5 23.5 
15 33.6 22.2 34.0 22.0 34.0 22.5 
16 31.9 22.5 34.0 22.0 34.0 22.0  

D.N. Wagner et al.                                                                                                                                                                                                                              



Building and Environment 187 (2021) 107360

12

seated occupants is especially of value in understanding airborne 
transmission of viruses produced by respiratory activities. Furthermore, 
spatial indoor seated occupancy monitoring platforms based on chair- 
based temperature sensing can be integrated with contact tracing dur-
ing pandemics to reduce the spread of infectious diseases. Spatial maps 
in Os(t) and 

∫
Os(t) dt can guide open-plan office seat assignments to 

decrease the likelihood that people are in close spatial proximity to one 
another by considering individual office use patterns. 

4.2. Diurnal seated occupancy diversity factor profiles 

The diurnal profiles in total seated occupancy determined by the 
chair-based temperature sensor array (Figs. 5 and 6) can be used to 
evaluate a time-resolved seated occupancy diversity factor following 
ANSI/ASHRAE/IES Standard 90.1–2019. When a room’s utilization 
schedule is not known, ASHRAE 90.1 suggests using an occupancy di-
versity factor based on predicted office demand for weekdays and 
weekends. As such, diversity factors are of value for conducting energy 
simulations for office environments under variable occupancy [70]. The 
occupancy diversity factor can be determined by dividing the actual 
room occupancy by the room seat capacity and thus, ranges from 0 for 
an unoccupied room to 1 for a room occupied at capacity. Fig. 7 illus-
trates the weekday seated occupancy diversity factor computed for the 
Living Lab office with a room capacity of 20 seats (left y-axis: mean, 
median, and 25th/75th percentile for February 10 to August 31, 2019) 
and the weekday office occupancy diversity factor recommended by 
ASHRAE 90.1 (right y-axis) [70]. 

The Living Lab and ASHRAE 90.1 weekday occupancy diversity 
factors are similar in shape, yet different in magnitude. As discussed 
previously, the characteristic weekday diurnal Os,total(t) profile exhibits 
two peaks at around 12:00 and 16:00. Each peak in Os,total(t) corresponds 
to a peak in the seated occupancy diversity factor, which is approxi-
mately 0.20 at 12:00 and 0.25 at 16:00. At 16:00, the diversity factor 
varies been 0.15 (25th percentile) and 0.35 (75th percentile), demon-
strating that the Living Lab room occupancy commonly remains below 
one-third of its 20 seat capacity. The ASHRAE 90.1 occupancy diversity 
factor shows step-wise peaks at approximately the same time intervals as 
for the Living Lab office. However, the magnitude of the ASHRAE 90.1 
occupancy diversity factor is much greater, with peaks approaching 1 
from 09:00 to 12:00 and 14:00 to 17:00. During the evening, from 19:00 
to 22:00, the Living Lab and ASHRAE 90.1 diversity factors are more 
similar in magnitude, varying between 0.075 and 0.10. The differences 
observed between the Living Lab and ASHRAE 90.1 diversity factors 
highlight the potential benefits that can be gained by tailoring building 
demand to specific office environments [70], especially for offices such 
as the Living Lab which operate under atypical workday schedules. 

Classifying a room based on fullness and the diversity of work- 
related activities helps to understand the energy demand with regards 
to lighting, electronic devices, heating and cooling, and ventilation. 
Similar to this study, Duarte et al. (2013) compared monthly measured 
room occupancies in commercial offices to the ASHRAE 90.1 diversity 
factor schedule [70]. Both private and open-plan offices had notable 
overlap with the peak times of energy demand, but differed notably in 
peak magnitudes, which were overestimated by the ASHRAE 90.1 di-
versity factor. This difference was exacerbated on days on or near hol-
idays and was also variable for different spaces and days of the week. 

4.3. Seated occupancy sensing considerations and limitations 

Occupant sensing campaigns must consider indoor space usage to 
select accurate sensing systems. The chair-based thermocouple arrays 
introduced in this study are evaluated as accurate for estimating seated 
occupancy. When someone sits in a chair, provided the chair is not 
heavily covered in layers of thick blankets or jackets, the datalogger 
instantly senses one’s presence. The algorithm used to estimate 

occupancy after data collection ensures that the binary occupancy is 
noted within 15 s of the real action. This method has an advantage over 
other seat-based occupancy measurement systems in that thermal 
sensing tailors to human detection, while pressure detection may add 
false-positives [90]. As it is an instantaneous method of seated occu-
pancy sensing, it does not require training for post-occupancy estima-
tions; however, methods of real-time data collection would further the 
application potential of the thermocouple arrays. Because 20 separate 
sensors and dataloggers were used to create an array detection system, 
of known locations, the spatial grid reflects exact desk locations. 
Device-centered detection methods such as a Bluetooth and WiFi sensing 
can also be used to create a grid using sensors, and can detect zone-based 
location, rather than exact occupant location [73,77]. 

In order to capture the presence of standing or moving individuals in 
a space intended for primarily sitting, a seated occupancy detection 
method can be combined with room-based sensors, such as PIR or 
cameras. Delocalized occupancy sensing in larger buildings with more 
frequent room traversal, rather than smaller zones, is possible with the 
use of less accurate, but more broader sensing techniques, including 
Bluetooth, WiFi, and PIR, rather than seat-based sensors. 

5. Conclusions 

This study developed and evaluated a novel indoor occupancy 
sensing technique – a chair-based temperature sensor array – to monitor 
seated occupancy patterns in an open-plan office environment. The 
chair-based temperature sensor array enabled for highly localized seated 
occupancy detection by tracking the seat surface temperatures and bi-
nary seated occupancies of each chair in the office with 15-s time res-
olution. The technique offers advantages compared to delocalized 
occupancy sensing techniques, such as a single CO2 or door PIR sensor 
per office. Notably, spatial maps in chair-specific seated occupancy 
trends over varying temporal scales offer insight into how each occupant 
contributes to office energy expenditures. The near-instant rise and 
decay in seat surface temperatures at the beginning and end of a seated 
period, respectively, demonstrates that this non-invasive technique can 
rapidly detect seated presence. Chair-based temperature sensing pro-
vides a means to categorize seated occupancy by relative level of pres-
ence in the office and cluster occupants by the amount of time they 
spend in a modern, collaborative indoor workspace. This technique is 
well suited for indoor environments that are primarily used for sitting- 
related tasks in a single, well-defined zone. 

The chair-based temperature sensor array captures the diversity in 
office use patterns for populations that do not follow traditional work 
schedules. In societies fueled more by service- and technology-based 
industries, the idea of a typical office setting is becoming more ab-
stract as buildings get creative with flexible definitions for office envi-
ronments. Development of co-working spaces, the ability to work from 
home, and on-demand workplaces attract companies and freelancers 
alike, with the opportunities to save costs, promote creative collabora-
tion, and reduce air pollution due to unnecessary commutes [93]. 
Straying from the traditional 09:00 to 17:00 workday will have drastic 
effects on predicted building usage profiles and the resulting temporal 
energy demands. Proper energy audits and smart buildings can help to 
avert avoidable energy spending in these unique contexts. As shown in 
this study for a Living Lab office, seated occupancy profiles vary 
considerably among the 20 occupants due the flexible work schedules of 
the graduate students. 

Seated occupancy monitoring with chair-appended thermocouples 
can guide research on how people shape the composition of indoor air as 
individual occupancy profiles are continually recorded. The chair-based 
temperature sensor array can be used streamline data collection for 
epidemiology studies to monitor the continuity and extent of time in-
dividuals spend sitting continuously at work. Reliable, continuous 
monitoring can aid in improving sitting-related information in specific 
environments and can be used to tailor intervention strategies to prevent 
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sedentary-related health problems, such as encouraging management to 
allow for more active workplaces [49]. A low-cost, flexible version of the 
thermocouple setup could relay information to an app that tells people 
how long they are present, allowing them to track their own office time 
as well as levels of continuous sitting. 

Future efforts can focus on integration of a chair-based temperature 
sensor array with IoT-based platforms for buildings. Real-time data co-
ordination through wireless connectivity would reduce the need for 
manual downloading of seat surface temperatures. Chair-based occu-
pancy detection methods resulting from novel uses of sensors and con-
trollers can be upscaled for applications where people sit most of the 
time, such as in offices, classrooms, auditoriums, and in transportation. 
As many large-scale, multi- and single-tenant office buildings currently 
use CO2-based DCV, these HVAC&L strategies can be improved when 
integrated with seat-based sensors that immediately detect the number 
of occupants to decrease lag and occupant schedule uncertainties. While 
this thermocouple setup detects seated occupant locations with a high 
degree of accuracy, the next step in delivering location-based HVAC&L 
control, whether for thermal comfort or energy efficiency, depends on 
the capabilities of the HVAC&L system itself to deliver tailored re-
sponses. Even with dependable monitoring is it also important to 
consider that quantitative occupancy detection is not a substitute for 
qualitative information, such as desired occupant preferences of thermal 
status or activity levels [49]. Horr et al. (2016) conclude in a review of 
indoor environmental quality and occupants that sensors related to 
building systems could increase productivity by automatically relaying 
subjective feedback information to companies to tailor the building to 
employees [50]. 
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